Home
Class 12
MATHS
For real x, the function (x-a)(x-b)/(x-c...

For real x, the function `(x-a)(x-b)/(x-c)` will assume all real values provided

A

`a gt b gt c`

B

`a lt b lt c`

C

`a gt c lt b`

D

`a le c le b`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `y=(x^(2)-(a+b)x+ab)/(x-c)`
`impliesyx-cy=x^(2)-(a+b)x+ab`
`impliesx^(2)-(a+b+y)x+(ab+cy)=0`
For real roots, `D ge 0`
`implies(a+b+y)^(2)-4(ab+cy)ge0`
`implies(a+b)^(2)+y^(2)+2(a+b)y-4ab-4cyge0`
`impliesy^(2)+2(a+b-2x)y+(a-b)^(2)ge0`
which is true for all real values of y.
`therefore" "D le0`
`4(a+b-2a)^(2)-4(a-b)^(2)le0`
`implies4(a+b-2c+a-b)(a+b-2c-a+)le0`
`implies(2a-2c)(2b-c)le0`
`implies(a-c)(b-c)le0`
`implies(c-a)(c-b)le0`
`implies` c mule lie between a and b
`i.e. a le c le b or b le c lea `
Promotional Banner

Similar Questions

Explore conceptually related problems

If a ,b ,c are distinct positive numbers, then the nature of roots of the equation 1//(x-a)+1//(x-b)+1//(x-c)=1//x is Option a) all real and is distinct Option b) all real and at least two are distinct Option c) at least two real Option d) all non-real

If a ,b ,c ,d are four consecutive terms of an increasing A.P., then the roots of the equation (x-a)(x-c)+2(x-b)(x-d)=0 are a. non-real complex b. real and equal c. integers d. real and distinct

If x in R ,a n da ,b ,c are in ascending or descending order of magnitude, show that (x-a)(x-c)//(x-b)(w h e r ex!=b) can assume any real value.

Prove that for real values of x ,(a x^2+3x-4)//(3x-4x^2+a) may have any value provided a lies between 1 and 7.

Find the complete set of values of a such that (x^2-x)//(1-a x) attains all real values.

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

Consider the real function f(x ) = ( x+2)/( x-2) find the domain and range of the function

If the middle term of the expansion of (x^3/3+3/x)^8 is 5670 then sum of all real values of x is equal to (A) 6 (B) 3 (C) 0 (D) 2

H(x) increase as f(x) decreases for all real values of x if

If x is real and (x^2+2x+c)//(x^2+4x+3c) can take all real values, of then show that 0lt=clt=1.