Home
Class 12
MATHS
If alpha,beta are the roots of x^2+p x+q...

If `alpha,beta` are the roots of `x^2+p x+q=0a n dgamma,delta` are the roots of `x^2+r x+s=0,` evaluate `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)` in lterms of `p ,q ,r ,a n dsdot` Deduce the condition that the equation has a common root.

Text Solution

Verified by Experts

The correct Answer is:
`(q-s)^(2)-rqp-rsp+sp^(2)+qr^(2)`

Since, `alpha beta` are the roots of `x^(2)+px+q=0` and `lamda, delta` are the roots of `x^(2)+rx+s=0`
`therefore alpha +beta=-p, alphabeta=q`
`and gamma, delta=-r,gamma delta=s`
Now, `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)`
`=[alpha^(2)-(gamma+delta)alpha+gammadelta][beta^(2)-(gamma+delta)beta+gammadelta]`
`=(alpha^(2)+ra+s)(beta^(2)+rbeta+s)`
`=(alphabeta)^(2)+r(alpha+beta)alphabeta+s(alpha^(2)+beta^(2))+alphabetar^(2)+rs(alpha+beta)+s^(2)`
`=q^(2)-rpq+s(p^(2)-2q)+qr^(2)-rsp+s^(2)`
`=(q-s)^(2)-rqp-rsp+sp^(2)+qr^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+p x+r=0, then ((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta))= a. 1 b. q c. r d. q+r

If alpha, beta be the roots of x^(2)+x+2=0 and gamma, delta be the roots of x^(2)+3 x+4=0 , then (alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta) is equal to

If alpha,beta are roots of x^2+p x+1=0a n dgamma,delta are the roots of x^2+q x+1=0 , then prove that q^2-p^2=(alpha-gamma)(beta-gamma)(alpha+delta)(beta+delta) .

If alpha,beta are the roots of a x^2+b x+c=0a n dalpha+h ,beta+h are the roots of p x^2+q x+r=0then h= a. -1/2(a/b-p/q) b. (b/a-q/p) c. 1/2(b/a-q/p) d. none of these

If alpha, beta, gamma are the roots of 9x^3 - 7x + 6 = 0 , then alpha beta gamma is …………

Let alpha,beta are the roots of x^2+b x+1=0. Then find the equation whose roots are - (alpha+1//beta)and-(beta+1//alpha) .

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

If alpha, beta are the roots of the equation (x-a)(x-b)=5 then the roots of the equation (x- alpha)(x-beta)+5=0 are

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

If alpha , beta, gamma are the roots of the equation x^3-4x^2+3x-1=0 , then the equation whose roots are (alpha+beta+gamma), alphabetagamma is :