Home
Class 12
MATHS
All the pair (x,y) that satisfy the ineq...

All the pair (x,y) that satisfy the inequality `2^(sqrt(sinx-2sinx+5)).(1)/(4^(sin^(2)y))le1` also satisfy the equation

A

`2|sinx|=3siny`

B

`sinx=|siny|`

C

`sin x=2siny`

D

`2 sin x=siny`

Text Solution

Verified by Experts

The correct Answer is:
B

Given, inequality is
`2^(sqrt(sin^(2)n-2sinx+5)),(1)/(4^(sin^(2)y))le1`
`implies2^(sqrt((sinx-1)^(2)+4)).2^(2sin^(2)y)le1`
`implies2^(sqrt((sinx-1)^(2)+4))le2^(sin^(2)y)`
`impliessqrt((sinx-1)^(2)+4)le2sin^(2)y`
`" "[if agt1and a^(m)lea^(n)impliesmlen]`
`because` Range of `sqrt((sinx-1)^(2)+4)is[2,2sqrt2]`
and range of `2 sin ^(2)y is[0,2].`
`therefore` the above inequality holds, iff `sqrt((sinx-1)^(2)+4)=2=2sin^(2)y`
`impliessinx=1and sin^(2)y=1`
`impliessinx=|siny|" "["from the options"]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all values of x that satisfies the inequality (2x-3)/((x-2)(x-4))lt0

Find all values of x that satisfies the inequality (2x-3)/((x-2)(x-4)) lt 0

Find all values of x that satisfies the inequality (2x - 3)/((x - 2) (x - 4)) lt 0.

Find the value of x which satisfy equation 2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))

The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-2)(x+1)x) le 0

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

The function y=2x^2-ln|x| is monotonically increasing for values of x(!=0) satisfying the inequalities____ and monotonically decreasing for values of x satisfying the inequalities_____.

The number of ordered 5-tuple (u, v, w, x, y) where (u, v, w, x, y in [1, 11]) which satisfy the inequality 2^(sin^2u+3cos^2v).3^(sin^2w+cos^2x).5^(cos^2y)>=720 is

Find the range of f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)

Number of intergers satisfying the inequality x^4- 29x^2+100 le 0 is