Home
Class 12
MATHS
Let -1lt=p<1. Show that the equation 4x^...

Let `-1lt=p<1.` Show that the equation `4x^3-3x-p=0` has a unique root in the interval `[1/2,1]` and identify it. (2001, 4M)

Text Solution

Verified by Experts

The correct Answer is:
A, C

Let `f(x)=4x^(3)-3x-p" "...(i)`
`Now, f((1)/(2))=4((1)/(2))^(3)-3((1)/(2))-p=4/8-3/2-p=-(1+p)`
`f(1)=4(1)^(3)-3(1)-p=1-p`
`impliesf((1)/(2)),f (1)=-(1+p)(1-p)`
`=(p+1)(p-1)=p^(2)-1`
Which is `le0, AAp in[-1,1].`
`thereforef(x)` has atleast one root in `[(1)/(2),1].`
Now, `f'(x)=12x^(2)-3=3(2x-1)(2x-1)`
`=3/4(x-(1)/(2))(x+(1)/(2))gt0 "in"[(1)/(2),1]`
`implies f(x)` is an increasing function in [1/2,1]
Therefore, f(x) has exactly one root in [1/2,1] for any `p in [-1,1].`
Now, let `x=cos theta`
`therefore x in[(1)/(2),1]impliesthetain[0,(pi)/(3)]`
From Eq. (i),
`4 cos^(3)theta-3costheta=pimpliescos 3 theta=p`
`implies 3 theta=cos^(-1)p`
`impliestheta=1/3cos^(-1)p`
`impliescostheta=cos((1)/(3)cos^(-1)p)`
`impliesx=cos ((1)/(3)cos^(-1)p)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let o lt p lt q and a ne 0 such that the equation px^(2) +4 lambda xy +qy^(2) +4a (x+y +1) = 0 represents a pair of straight lines, then a can lie in the interval

Let 0 lt a lt 1. if tan A =a and tan B= (1-a)/(1+a) then a possible value of A +B is

Solve 1lt=|x-2|lt=3.

statement 1: Let p_1,p_2,...,p_n and x be distinct real number such that (sum_(r=1)^(n-1)p_r^2)x^2+2(sum_(r=1)^(n-1)p_r p_(r+1))x+sum_(r=2)^n p_r^2 lt=0 then p_1,p_2,...,p_n are in G.P. and when a_1^2+a_2^2+a_3^2+...+a_n^2=0,a_1=a_2=a_3=...=a_n=0 Statement 2 : If p_2/p_1=p_3/p_2=....=p_n/p_(n-1), then p_1,p_2,...,p_n are in G.P.

Let alpha and beta be the roots of the quadratic equation x^(2) sin theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@)) , and alpha lt beta . Then Sigma_(n=0)^(oo) (alpha^(n) + ((-1)^(n))/(beta^(n))) is equal to

Let f(x)=x^3-3x^2+6AAx in R and g(x)={m a x :f(t ; x+1lt=tlt=x+2,-3lt=xlt=0 1-x ,xgeq .Find continuity and differentiability of g(x) for x in [-3,1]

Let A-=(3,-4),B-=(1,2)dot Let P-=(2k-1,2k+1) be a variable point such that P A+P B is the minimum. Then k is (a)7/9 (b) 0 (c) 7/8 (d) none of these

Let Aa n dB be two event such that P(AuuB)geq3//4 and 1//8lt=P(AnnB)lt=3//8. Statement 1: P(A)+P(B)geq7//8. Statement 2: P(A)+P(B)lt=11//8.

Let Aa n dB be two events such that P(A)=3//5a n dP(B)=2//3. Then Statement 1: 4/(15)lt=P(AnnB)lt=3/5dot Statement 2: 2//5lt=P(A/B)lt=9//10.