Home
Class 12
MATHS
Let Sn=sum(k=1)^(4n)(-1)(k(k+1))/2k^2dot...

Let `S_n=sum_(k=1)^(4n)(-1)(k(k+1))/2k^2dot` Then `S_n` can take value (s) `1056` b. `1088` c. `1120` d. `1332`

A

1056

B

1088

C

1120

D

1332

Text Solution

Verified by Experts

The correct Answer is:
A, D

Convert it into differences and use sum of n terms of an AP,
i.e, `S_(n) = (n)/(2) [2a + (n -1) d]`
Now, `S_(n) = underset(k =1)overset(4n)sum (-1)^((k(k+1))/(2)).k^(2)`
`= -(1)^(2) - 2^(2) + 3^(2) + 4^(2) - 5^(2) - 6^(2) + 7^(2) + 8^(2) +`....
`= (3^(2) -1^(2)) + (4^(2) -2^(2)) + (7^(2) -5^(2)) + (8^(2) -6^(2)) +`...
`ubrace(2"{"(4 + 6 + 12+ ...))_("n terms")+ubrace((6+14+22+...)"}")_("n terms")`
`= 2[(n)/(2) {2xx4 + (n-1) 8} + (n)/(2) {2 xx 6 + (n -1) 8}]`
`= 2 [n (4 + 4n - 4) + n (6 + 4n -4)]`
`= 2 [4n^(2) + 4n^(2) + 2n] = 4n (4n +1)`
Here, `1056 = 32 xx 33, 1088 = 32 xx 34`,
`1120 = 32 xx 35, 1332 = 36 xx 37`
1056 and 1332 are possible answer
Promotional Banner

Similar Questions

Explore conceptually related problems

Find sum_(k=1)^(n)(1)/(k(k+1)) .

Prove that sum_(k=1)^(n)(1)/(k(k+1))=1-(1)/(n+1).

Let f(n)=sum_(k=1)^(n) k^2(n C_k)^ 2 then the value of f(5) equals

Prove that sum_(k=1)^n 1/(k(k+1))=1−1/(n+1) .

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is