Home
Class 12
MATHS
Let f(x) = ax^(2) + bx + c, a != 0 and D...

Let `f(x) = ax^(2) + bx + c, a != 0 and Delta = b^(2) - 4ac`. If `alpha + beta, alpha^(2) + beta^(2) and alpha^(3) + beta^(3)` are in GP, then

A

`Dleta != 0`

B

`b Delta = 0`

C

`c Delta = 0`

D

`bc != 0`

Text Solution

Verified by Experts

The correct Answer is:
C

Since, `(alpha + beta), (alpha^(2) + beta^(2)), (alpha^(3) + beta^(3))` are in GP
`rArr (alpha^(2) + beta^(2))^(2) = (alpha + beta) (alpha^(3) + beta^(3))`
`rArr alpha^(4) + beta^(4) + 2 alpha^(2) beta^(2) = alpha^(4) + beta^(4) + alpha beta^(3) + beta alpha^(3)`
`rArr alpha beta (alpha^(2) + beta^(2) - 2 alpha beta) = 0`
`rArr alpha beta ( alpha - beta)^(2) = 0`
`rArr alpha beta = 0 or alpha beta`
`rArr (c)/(alpha) = 0 or Delta = 0`
`rArr cDelta = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0and Delta =b^2-4ac cdotIfalpha+beta,alpha^2+beta^2,alpha^3+beta^3 are in G.P. Then a. Delta!=0 b. bDelta=0 c. cDelta =0 d. Delta =0

Let f(x)=ax^(2)+bx+c , g(x)=ax^(2)+qx+r , where a , b , c , q , r in R and a lt 0 . If alpha , beta are the roots of f(x)=0 and alpha+delta , beta+delta are the roots of g(x)=0 , then

ax^2 + bx + c = 0(a > 0), has two roots alpha and beta such alpha 2, then

alpha, beta are roots of y^(2)-2y-7=0 find, (i) alpha^(2)+beta^(2) " (ii) " alpha^(3)+beta^(3)

If alpha" and "beta are the roots of x^(2)-ax+b^(2)=0 , then alpha^(2)+beta^(2) is equal to

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

If alpha and beta are the roots of equation x^(2)-4x+1=0 , find (i) alpha^(2)+beta^(2) (ii) alpha^(3)+beta^(3)

In the quadratic ax^2+bx+c=0,D=b^2-4ac and alpha+beta,alpha^2+beta^2,alpha^3+beta^3, are in G.P , where alpha,beta are the roots of ax^2+bx+c, then (a) Delta != 0 (b) bDelta = 0 (c) cDelta = 0 (d) Delta = 0

If alpha, beta and gamma the roots of the equation x^(3) + 3x^(2) - 4x - 2 = 0. then find the values of the following expressions: (i) alpha ^(2) + beta^(2) + gamma^(2) (ii) alpha ^(3) + beta^(3) + gamma^(3) (iii) (1)/(alpha)+(1)/(beta)+(1)/(gamma)

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha