Home
Class 12
MATHS
Let alpha,beta be the roots of x^2-x+p=0...

Let `alpha,beta` be the roots of `x^2-x+p=0a n dgamma,delta` are roots of `x^2-4x+q=0.` If `alpha,beta,gamma,delta` are in G.P., then the integral value of `pa n dq` , respectively, are `-2,-32` b. `-2,3` c. `-6,3` d. `-6,-32`

A

`-2, -32`

B

`-2, 3`

C

`-6, 3`

D

`-6, -32`

Text Solution

Verified by Experts

The correct Answer is:
A

`{:(alpha + beta = 1),(alpha beta = p):}}` and `{:(lamda + delta = 4),(lamda delta = q):}}`
Let r be the common ratio.
Since, `alpha, beta, gamma and delta` are in GP.
Therefore, `beta = ar, gamma = ar^(2)`
and `delta = ar^(3)`
Then, `alpha + ar = 1 rArr alpha (1 + r) = 1`...(i)
and `ar^(2) + ar^(3) = 4 rArr ar^(2) (1 +r) = 4`...(ii)
From Eqs. (i) and (ii), `r^(2) = 4 rArr r = +-2`
Now, `alpha.ar = p and ar^(2) .ar^(3) = q`
On putting `r = -2`, we get
`alpha = -1, p = -2 and q = -32`
Again putting `r = 2`, we get `alpha = 1//3 and p = -(2)/(9)`
since, q and p are integers
Therefore, we take `p = -2 and q = -32`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+p x+r=0, then ((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta))= a. 1 b. q c. r d. q+r

If alpha, beta be the roots of x^(2)+x+2=0 and gamma, delta be the roots of x^(2)+3 x+4=0 , then (alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta) is equal to

Let alpha_1,beta_1 be the roots x^2-6x+p=0a n d alpha_2,beta_2 be the roots x^2-54 x+q=0dot If alpha_1,beta_1,alpha_2,beta_2 form an increasing G.P., then sum of the digits of the value of (q-p) is ___________.

Given that alpha , gamma are roots of the equation Ax^(2)-4x+1=0 and beta , delta are roots of the equation Bx^(2)-6x+1=0 . If alpha , beta , gamma and delta are in H.P. , then

If alpha,beta are roots of x^2+p x+1=0a n dgamma,delta are the roots of x^2+q x+1=0 , then prove that q^2-p^2=(alpha-gamma)(beta-gamma)(alpha+delta)(beta+delta) .

Let alpha,beta are the roots of x^2+b x+1=0. Then find the equation whose roots are - (alpha+1//beta)and-(beta+1//alpha) .

If alpha,beta,gamma are the roots of x^3-2x^2+3x-4=0 find the value of sumalpha^2

If alpha, beta, gamma are the roots of 9x^3 - 7x + 6 = 0 , then alpha beta gamma is …………

If alpha and beta are the roots of 2x^2-5x+3=0 form the equation whose roots are alpha^2 and beta^2

If alpha and beta are the roots of x^(2)+6x-4=0 , find the values of (alpha-beta)^(2) .