Home
Class 12
MATHS
The sum sum(k=1)^(20) k (1)/(2^(k)) is ...

The sum `sum_(k=1)^(20) k (1)/(2^(k))` is equal to

A

`2 - (11)/(2^(19))`

B

`1 - (11)/(2^(20))`

C

`2 - (3)/(2^(17))`

D

`2 - (21)/(2^(20))`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `S = underset(h =1)overset(20)sum k ((1)/(2^(k)))`
`S = (1)/(2) + (2)/(2^(2)) + (3)/(2^(3)) + (4)/(2^(4)) + ...+ (20)/(2^(20))`...(i)
On multiplying by `((1)/(2))` both sides, we get
`(S)/(2) = (1)/(2^(2)) + (2)/(2^(3)) + (3)/(2^(4)) + ...+ (19)/(2^(20)) + (20)/(2^(21))`...(ii)
On subtracting Eq. (ii) from Eq. (i), we get
`S - (S)/(2) = (1)/(2) + (1)/(2^(2)) + (1)/(2^(3)) + ...+ (1)/(2^(20)) - (20)/(2^(21))`
`rArr (S)/(2) = ((1)/(2) (1 - (1)/(2^(20))))/(1 - (1)/(2)) - (20)/(2^(21))" " [ :' " sum of "GP = (a(1- r^(n)))/(1 -r) , r lt 1]`
`(S)/(2) = 1 - (1)/(2^(20)) - (20)/(2^(21)) = 1 - (1)/(2^(20)) - (10)/(2^(20)) = 1 - (11)/(2^(20))`
`rArr S = 2 - (11)/(2^(19))`
Promotional Banner

Similar Questions

Explore conceptually related problems

1 k Wh is equal to

Find sum_(k=1)^(n)(1)/(k(k+1)) .

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )

Find the sum sum_(k=0)^(10)^(20)C_kdot

The sum sum_(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum_(i=1)^(10)1 is equal to

The sum sum_(k=1)^(10)underset(i lt j lt k)underset(j=1)(sum^(10))sum_(i=1)^(10)1 is equal to

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

Let S_k be sum of an indinite G.P whose first term is 'K' and commmon ratio is (1)/(k+1) . Then Sigma_(k=1)^(10) S_k is equal to _________.