Home
Class 12
MATHS
Let Sn=1+q+q^2 +?+q^n and Tn =1+((q+1)/2...

Let `S_n=1+q+q^2 +?+q^n` and `T_n =1+((q+1)/2)+((q+1)/2)^2+?+((q+1)/2)^n` If `alpha T_100=^101C_1 +^101C_2 xS_1 +^101C_101 xS_100,` then the value of `alpha` is equal to (A) `2^99` (B) `2^101` (C) `2^100` (D) `-2^100`

A

`2^(100)`

B

202

C

200

D

`2^(99)`

Text Solution

Verified by Experts

The correct Answer is:
A

(a) We have, `S_(n) = 1 + q + q^(2) + ...+ q^(n)` and `T_(n) = 1 + ((q +1)/(2)) + ((q +1)/(2))^(2) + ...+ ((q +1)/(2))^(n)`
Also, we have
`.^(101)C_(1) + .^(101)C_(2) + .^(101)C_(3)S_(2) + ...+ .^(101)C_(101) S_(100) = alpha T_(100)`
`rArr .^(101)C_(1) + .^(101)C_(2) ( 1 + q)+ .^(101)C_(3) (1 + q + q^(2)) + ...+ .^(101)C_(101) (1 + q + q^(2) + ... + q^(100))`
`= alpha. T_(100)`
`rArr .^(101)C_(1) + .^(101)C_(2) ((1 -a^(2)))/(1 -q) + .^(101)C_(3) ((1 -q^(3))/(1 -q)) + .^(101)C_(4) ((1 -q^(4))/(1- q)) + ...+ .^(101)C_(101) ((1 -q^(101))/(1 -q))`
`= alpha.T_(100) [ :' " for a GP", S_(n) = a ((1 -r^(n))/(1 -r)), r != 1]`
`rArr (1)/(1 -q) [{.^(101)C_(1) + .^(101)C_(2) +...+ .^(101)C_(101)} - {.^(101)C_(1) q + .^(101)C_(2)q^(2) + ...+ .^(101)C_(101) q^(101)} = alpha.T_(100)`
`rArr (1)/((1 -q)) [(2^(101) -1) - ((1 + q)^(101) -1)] = alpha T_(100)`
`rArr (2^(101) - (q +1)^(101))/(1 -q) = alpha [1 + (q +1)/(2) + ((q +1)/(2))^(2) + ...+ ((q +1)/(2))^(100)]`
`rArr (2^(101) - (q + 1)^(101))/(1 -q) = alpha [1.(1 - ((q +1)/(2))^(101))/(1 - (q +1)/(2))] " " [ :' q != 1 rArr q + 1 != 2 rArr (q +1)/(2) != 1]`
`= (alpha [2^(101) - (q + 1)^(101)])/((1 -q).2^(100)) rArr alpha = 2^(100)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Given, s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n ,q!=1 prove that "^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot

The approximate value of 1/(10.1) .

If p >1 and q >1 are such that log(p+q)=logp+logq , then the value of log(p-1)+log(q-1) is equal to (a) 0 (b) 1 (c) 2 (d) none of these

If q_(1)+q_(2)=q , then the value of the ratio q_(1)/q , for which force between q_1 and q_2 is maximum is

If alpha, beta in C are distinct roots of the equation x^2-x+1=0 then alpha^(101)+beta^(107) is equal to

Let S_(1), S_(2), ...... S_(101) be consecutive terms of A.P. If 1/(S_(1)S_(2)) + 1/(S_(2)S_(3)) + ...... + 1/(S_(100)S_(101)) = 1/6 and S_(1) + S_(101) = 50 , then |S_(1) - S_(101)| is equal to

If cos e ctheta-cottheta=q , then the value of cos e ctheta is (a) q=1/q (b) q-1/q 1/2(q+1/q) (d0 none of these

Let int dx/(x^(2008)+x) = 1/p In((x^(q))/(1+x^(r)))+C where p,q,r in N and need not be distinct, then the value of ((p+q)/r) equals

If f(x)=prod_(n=1)^(100)(x-n)^(n(101-n)) ; then (f(101))/(f'(101))=

If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the value of (f'(101))/(f(101)) is Option 1: 5050 Option 2: 2575 Option 3: 3030 Option 4: 1250