Home
Class 12
MATHS
If an=3/4-(3/4)^2+(3/4)^3+...(-1)^(n-1)(...

If `a_n=3/4-(3/4)^2+(3/4)^3+...(-1)^(n-1)(3/4)^n` and `b_n=1-a_n`, then find the minimum natural number n, such that `b_n>a_n`

Text Solution

Verified by Experts

The correct Answer is:
7

`B_(n) = 1 - A_(n) gt A_(n)`
`rArr A_(n) lt (1)/(2) rArr (3)/(4) ((1 - (-(3)/(4))^(n)))/(1 + (3)/(4)) lt (1)/(2)`
`rArr (-(3)/(4))^(n) gt - (1)/(6)`
Obviously, it is true for all even values of n.
But for
`n = 1, -(3)/(4) lt - (1)/(6)`
`n = 3, (-(3)/(4))^(3) = - (27)/(64) lt - (1)/(6)`
`n = 5, (-(3)/(4))^(5) = - (243)/(1024) lt - (1)/(6)`
and for `n = 7`,
`(-(3)/(4))^(7) = - (2187)/(12288) gt - (1)/(6)`
Hence, minium odd natural number `n_(0) = 7`
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n-1) P_(3) : P_(4) = 1 , 10 find n.

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .

If (n!)/(3!(n-4)! and (n!)/(5!(n-5)! are in the ratio 5:3 find the value of n.

If a_1=1a n da_(n+1)=(4+3a_n)/(3+2a_n),ngeq1,a n dif("lim")_(nvecoo)a_n=a , then find the value of adot

If a_1+a_2+a_3+...+a_n=1AAa_i>0,i=1,2,3, ,n , then find the maximum value of a_1 a_2a_3a_4a_5.... a_n.

If a_(1)=1 and a_(n)+1=(4+3a_(n))/(3+2a_(n)),nge1"and if" lim_(ntooo) a_(n)=a,"then find the value of a."

If the sum of n terms of a G.P. is 3-(3^(n+1))/(4^(2n)) , then find the common ratio.

If (n !)/(3 ! (n-4)!) and (n ! )/(5 !(n-5) ! are in the ratio 5:3 find the value of n.

If the sum of n terms of a G.P. is 3(3^(n+1))/(4^(2n)) , then find the common ratio.

Let: a_n=int_0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim_(n->oo)na_n