Home
Class 12
MATHS
Suppose four distinct positive numbers a...

Suppose four distinct positive numbers `a_1, a_2, a_3, a_4,` are in G.P. Let `b_1=a_1,b_2=b_1+a_2.b_3=b_2+a_3 and b_4=b_3+a_1.`

A

Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I

B

Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I

C

Statement I is true, Statement II is false

D

Statement I is false, Statement II is true

Text Solution

Verified by Experts

The correct Answer is:
C

Let `a_(1) = 1, a_(2) = 2, rArr a_(3) = 4, a_(4) = 8`
`:. B_(1) = 1, b_(2) =3, b_(3) = 7, b_(4) = 15`
Clearly, `b_(1), b_(2), b_(3), b_(4)` are not in HP.
Hence, Statement II is false
Statement I is already true
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1, a_2, a_3, ?a_10 are in G.P. if a_3/a_1 =25 then a_9/a_5 is equal to (A) 5^4 (B) 4.5^4 (C) 4.5^3 (D) 5^3

Let a_1, a_2, a_3, ?a_10 are in G.P. if a_3/a_1 =25 then a_9/a_5 is equal to (A) 5^4 (B) 4.5^4 (C) 4.5^3 (D) 5^3

Let a_1,a_2,a_3…… ,a_n be in G.P such that 3a_1+7a_2 +3a_3-4a_5=0 Then common ratio of G.P can be

If a_0, a_1, a_2, a_3 are all the positive, then 4a_0x^3+3a_1x^2+2a_2x+a_3=0 has least one root in (-1,0) if (a) a_0+a_2=a_1+a_3 and 4a_0+2a_2>3a_1+a_3 (b) 4a_0+2a_2<3a_1+a_3 (c) 4a_0+2a_2=3a_1+a_0 and 4a_0+a_2lta_1+a_3 (d) none of these

Let a ,b be positive real numbers. If a A_1, A_2, b be are in arithmetic progression a ,G_1, G_2, b are in geometric progression, and a ,H_1, H_2, b are in harmonic progression, show that (G_1G_2)/(H_1H_2)=(A_1+A_2)/(H_1+H_2)=((2a+b)(a+2b))/(9a b)

Let a ,b be positive real numbers. If a A_1, A_2, b be are in arithmetic progression a ,G_1, G_2, b are in geometric progression, and a ,H_1, H_2, b are in harmonic progression, show that (G_1G_2)/(H_1H_2)=(A_1+A_2)/(H_1+H_2)=((2a+b)(a+2b))/(9a b)

Let a_1, a_2, a_3, ,a_(101) are in G.P. with a_(101)=25a n dsum_(i=1)^(201)a_1=625. Then the value of sum_(i=1)^(201)1/(a_1) equals____________.

Let a_1, a_2, ,a_(10) be in A.P. and h_1, h_2, h_(10) be in H.P. If a_1=h_1=2a n da_(10)=h_(10)=3,t h e na_4h_7 is

Prove that the value of each the following determinants is zero: |[a_1,l a_1+mb_1,b_1],[a_2,l a_2+mb_2,b_2],[a_3,l a_3+m b_3,b_3]|

a_1, a_2, a_3, in R-{0} and a_1+a_2cos2x+a_3sin^2x=0fora l lx in R , then (a)vector vec a=a_1 hat i+a_2 hat j+a_3 hat ka n d vec b=4 hat i+2 hat j+ hat k are perpendicular to each other (b)vector vec a=a_1 hat i+a_2 hat j+a_3 hat ka n d vec b=- hat i+ hat j+2 hat k are parallel to each other (c)vector vec a=a_1 hat i+a_2 hat j+a_3 hat k is of length sqrt(6) units, then one of the ordered triple (a_1, a_2, a_3)=(1,-1,-2) (d)are perpendicular to each other if 2a_1+3a_2+6a_3=26 ,t h e n|a_1 hat i+a_2 hat j+a_3 hat k|i s2sqrt(6)