Home
Class 12
MATHS
The sum up to 10 terms of the series (...

The sum up to 10 terms of the series `(3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) + 2^(2) + 3^(2)) +`....

A

680

B

600

C

660

D

620

Text Solution

Verified by Experts

The correct Answer is:
C

Given series is
`(3 xx 1^(3))/(1^(2)) + (5xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) + 2^(2) + 3^(3)) +`...
So, nth term
`T_(n) = ((3 + (n -1) 2) (1^(3) + 2^(3) + 3^(3) ...+ n^(3)))/(1^(2) + 2^(2) + 3^(2) + ...+ n^(2))`
`= ((2n + 1) xx ((n (n +1))/(2))^(2))/((n (n +1) (2n +1))/(6))`
`[ :' underset(r=1)overset(n)Sigma r^(3) = [(n(n+1))/(2)]^(2) and underset(r =1)overset(n)Sigma r^(2) = (n(n+1) (2n+1))/(6)]`
So, `T_(n) = (3n (n +1))/(2) = (3)/(2) (n^(2) + n)`
Now, sum of the given series upto n terms
`S_(n) = Sigma T_(n) = (3)/(2) [Sigma n^(2) + Sigma n]`
`= (3)/(2) [(n (n+1) (2n+1))/(6) + (n(n+1))/(2)]`
`:. S_(10) = (3)/(2) [(10 xx 11 xx 21)/(6) + (10 xx 11)/(2)]`
`= (3)/(2) [(5 xx 11 xx 7) + (5xx 11)]`
`= (3)/(2) xx 55 (7 + 1) = (3)/(2) xx 55 xx 8 = 3 xx 55 xx 4`
`= 12 xx 55 = 660`
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+….+… is

Find the sum up to the 17^(th) term of the series (1^3)/(1) + (1^3 + 2^3)/(1+3) + (1^3 + 2^3 + 3^3)/(1+3+5)+ ….

Find the sum to n terms of each of the series in 3 × 1^(2) + 5 × 2^(2) + 7 × 3^(2) +.........

The sum of the first 9 terms of the series 1^3/1 + (1^3 + 2^3)/(1+3) + (1^3 + 2^3 +3^3)/(1 + 3 +5) ..... is :

Find the sum upto the 17^(th) term of the series 1^(3)/1 + (1^(3)+2^(3))/(1+3) + (1^(3)+2^(3)+3^(3))/(1+3+5)+...

Find the sum to n terms of the series 3//(1^2xx2^2)+5//(2^2xx3^2)+7//(3^2xx4^2)+dot

Find the sum to n terms of each of the series in 1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ...