Home
Class 12
MATHS
If (3/4)^3+(1 1/2)^3 +(2 1/4)^3 +? upto ...

If `(3/4)^3+(1 1/2)^3 +(2 1/4)^3 +?` upto 15 terms `=225k,` then `k` is equal to (A) `108` (B) `9` (C) `27` (D) `54`

A

108

B

27

C

54

D

9

Text Solution

Verified by Experts

The correct Answer is:
B

Given series is
`((3)/(4))^(3) + (1(1)/(2))^(3) + (2(1)/(4))^(3) + 3^(3) + (3(3)/(4))^(3) +`...
Let `S = ((3)/(4))^(3) + ((6)/(4))^(3) + ((9)/(4))^(3) + ((12)/(4))^(3) + ((15)/(4))^(3) + ...+` upto 15 terms
`= ((3)/(4))^(3) [1^(3) + 2^(3) + 3^(3) + 4^(3) + 5^(3) + ..+ 15^(3)]`
`= ((3)/(4))^(3) ((15 xx 16)/(2))^(2)`
`[ :' 1^(3) + 2^(3) + 3^(3) + ...+ n^(3) = ((n(n+1))/(2))^(2) , n in N]`
`= (27)/(64) xx (225 xx 256)/(4)`
`= 27 xx 225`
`rArr S = 27 xx 25 = 225k`
`rArr k = 27` [given]
Promotional Banner

Similar Questions

Explore conceptually related problems

Expand (1-x)^(1/3) upto 4 terms for |x|<1

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If x+y=k is normal to y^2=12 x , then k is 3 (b) 9 (c) -9 (d) -3

If 1 + 2 + 3 …… + n =k" then" 1^(3) + 2^(3) + ……….n^(3) is equal to ………..

If 1^(3) + 2^(3) + 3^(3) + . . . . + k^(3) = 44100 then find 1 + 2 + 3 + . . . . + k

If k + 2, 4K - 6, 3K - 2 are the 3 consecutive terms of an A,P, then value of K is ……..

If 1+2 +3 + ….. + n = k then 1^(3) + 2^(3) + ….. + n^(3) is equal to……….

If 1^(3) + 2^(3) + 3^(3) + ……. + k^(3) =8281 , then find 1+2 + 3 + ……. +k.

The sum of the series 1/1.2 - 1/2.3 + 1/3.4 … upto infty is equal to