Home
Class 12
MATHS
If Sk=(1+2+3+...k)/k then find the value...

If `S_k=(1+2+3+...k)/k` then find the value of `S_1^2+S_2^2+....S_n^2`

Text Solution

Verified by Experts

The correct Answer is:
D

Since, `S_(k) = (1 + 2 + 3+ ..+ k)/(k)`
`= (k (k +1))/(2k) = (k +1)/(2)`
So, `S_(k)^(2) = ((k+1)/(2))^(2) = (1)/(4) (k+1)^(2)` ...(i)
Now, `(5)/(12) A = S_(1)^(2) + S_(2)^(2) + S_(3)^(2) + ....S_(10)^(2) = underset(k=1)overset(10)sum S_(k)^(2)`
`rArr (5)/(12) A = (1)/(4) underset(k =1)overset(10)sum (k +1)^(2) = (1)/(4) [2^(2) + 3^(2) + 4^(2) + ...11^(2)]`
`= (1)/(4) [(11 xx(11 + 1) (2xx 11 + 1))/(6) - 1^(2)]`
`[ :' sum n^(2) = (n (n+1) (2n+1))/(6)]`
`= (1)/(4) [(11xx 12 xx 23)/(6) -1] = (1)/(4) [(22 xx 23) -1]`
`= (1)/(4) [506 -1] = (1)/(4) [505]`
`rArr (5)/(12) A = (505)/(4) rArr A = 303`
Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(1), S_(2), S_(3),...,S_(n) are the sums of infinite geometric series, whose first terms are 1, 2, 3,.., n and whose common rations are (1)/(2), (1)/(3), (1)/(4),..., (1)/(n+1) respectively, then find the values of S_(1)^(2) + S_(2)^(2) + S_(3)^(2) + ...+ S_(2n-1)^(2) .

In an A.P. if S_1=T_1+T_2+T_3+.....+T_n(nod d)dotS_2=T_2+T_4+T_6+.........+T_(n-1) , then find the value of S_1//S_2 in terms of ndot

Let S_(k) = (1+2+3+...+k)/(k) . If S_(1)^(2) + s_(2)^(2) +...+S_(10)^(2) = (5)/(12)A , then A is equal to

If int_0^(pi/2)logsinthetadtheta=k , then find the value of int_pi^(pi/2)(theta/(s intheta))^2dtheta in terms of k

Let S_(k) , where k = 1,2 ,....,100, denotes the sum of the infinite geometric series whose first term is (k -1)/(k!) and the common ratio is (1)/(k) . Then, the value of (100^(2))/(100!) +sum_(k=2)^(100) | (k^(2) - 3k +1) S_(k)| is....

Let S_n = cos ((n pi )/( 10)) , n = 1,2,3,…… then the value of ( s_1 s_2 ……s_(10))/( s_1 + s_2 +…….. +s_(10)) is equal to

If k + 2 ,4k - 6, 3k - 2 are the 3 consecutive terms of an A.P, then the value of k i s ......

Let s_(n) denote the sum of first n terms of an A.P. and S_(2n) = 3S_(n) . If S_(3n) = kS_(n) then the value of k is equal to

If S_(n) denotes the sum of n terms of an AP whose common difference is d, the value of S_(n)-2S_(n-1)+S_(n-2) is