Home
Class 12
MATHS
Let A be the sum of the first 20 terms a...

Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series `1^2+2.2^2+3^2+2.4^2+5^2+2.6^2+...` If `B-2A=100lambda` then `lambda` is equal to (1) 232 (2) 248 (3) 464 (4)496

A

232

B

248

C

464

D

496

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`1^(2) + 2.2^(2) + 3^(2) + 2.4^(2) + 5^(2) + 2.6^(2) +`....
A = sum of first 20 terms
B = sum of first 40 terms
`:. A = 1^(2) + 2.2^(2) + 3^(2) + 2.4^(2) + 5^(2) + 2.6^(2) + ..+ 2.20^(2)`
`A = (1^(2) + 2^(2) + 3^(2) + ....+ 20^(2)) + (2^(2) + 4^(2) + 6^(2) + ...+ 20^(2))`
`A = (1^(2) + 2^(2) + 3^(2) + ....+ 20^(2)) + 4(1^(2) + 2^(2) + 3^(2) + ...+ 10^(2))`
`A = (20 xx 21 xx 41)/(6) + (4 xx 10 xx 11 xx 21)/(6)`
`A = (20 xx 21)/(6) (41 + 22) = (20 xx 41 xx 63)/(6)`
Similarly
`B = (1^(2) + 2^(2) + 3^(2) + ...+ 40^(2)) + 4(1^(2) + 2^(2) + ...+ 20^(2))`
`B = (40xx41 xx 81)/(6) + (4xx 20 xx 21 xx 41)/(6)`
`B = (40 xx 41)/(6) (81 + 42) = (40 xx 41 xx 123)/(6)`
Now, `B - 2A = 100 lamda`
`:. (40 xx 41 xx 123)/(6) - (2 xx 20 xx 21 xx 63)/(6) = 100 lamda`
`rArr (40)/(6) (5043 - 1323) = 100 lamda rArr (40)/(6) xx 3720 = 100 lamda`
`rArr 40 xx 620 = 100 lamda rArr lamda = (40 xx 620)/(100) = 248`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the firt 40 terms of the series 1^(2) -2^(2) + 3^(2) - 4^(2) +……….

Find the sum to n terms of the series 1^2+2^2+3^2-4^2+5^2-6^2+. . . .

The sum to first 25 terms of the series 1+2+3+"…………" is

Find the sum of first n terms and the sum of first 5 terms of the geometric series 1+ 2/3 +4/9 +............

If the surm of the first ten terms of the series, (1 3/5)^2+(2 2/5)^2+(3 1/5)^2+4^2+(4 4/5)^2+........ , is 16/5m ,then m is equal to

The sum of the series 1^(2) + 3^(2) + 5^(2) + ......+n'

The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+….+… is

Find the sum to n terms of each of the series in 5^2 + 6^2 + 7^2 + ... + 20^(2)

Find the sum to n terms of each of the series in 1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ...

Sum of the first n terms of the series 1/2+3/4+7/8+(15)/(16)+ is equal to