Home
Class 12
MATHS
If alpha in (0,pi/2),t h e nsqrt(x^2+x)+...

If `alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x))` is always greater than or equal to `2tanalpha` `1` `2` `sec^2alpha`

A

`2 tan alpha`

B

1

C

2

D

`sec^(2) alpha`

Text Solution

Verified by Experts

The correct Answer is:
A

Here, `alpha in (0, (pi)/(2)) rArr tan alpha gt 0`
`:. (sqrt(x^(2) + x) + (tan^(2) alpha)/(sqrt(x^(2) + x)))/(2) ge sqrt(sqrt(x^(2) +x).(tan^(2) alpha)/(sqrt(x^(2) + x)))` [ using AM `ge` GM]
`rArr sqrt(x^(2) + x) + (tan^(2) alpha)/(sqrt(x^(2) + x)) ge 2 tan alpha`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(cos 36^(@)-sin18^(@)) , then a value of alpha

(cos2 x - cos2 alpha)/(cos x - cos alpha)

If tan alpha and tan beta are the roots of x^2 + ax +b =0 then (sin(alpha+beta))/(sin alpha sin beta) is equal to

Let alpha in (0, pi//2) be fixed. If the integral int("tan x" + "tan" alpha)/("tan x" - "tan" alpha)dx = A(x)"cos 2 alpha+B(x) "sin" 2 alpha +C ,where C is a constant of integration, then the functions A(x) and B(x) are respectively.

Prove that sin4 alpha=4tan alpha (1- tan^(2)alpha)/((1+tan^2 alpha)^2

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)),beta=tan^(-1)((2x-y)/(sqrt(3y)))" then "alpha-beta=

If alpha" and "beta are the roots of x^(2)-ax+b^(2)=0 , then alpha^(2)+beta^(2) is equal to

If alpha is an integer satisfying |alpha|lt=4-|[x]|, where x is a real number for which 2xtan^(-1)x is greater than or equal to ln(1+x^2), then the number of maximum possible values of alpha (where [.] represents the greatest integer function) is_____

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=alpha" then prove that "x^(2)=sin2alpha.