Home
Class 12
MATHS
If a-1,a2, ,an are positive real number...

If `a-1,a_2, ,a_n` are positive real numbers whose product is a fixed number `c ,` then the minimum value of a1 + d2 +..... + an-1 + 2an is

A

`n(2c)^(1//n)`

B

`(n +1) c^(1//n)`

C

`2nc^(1//n)`

D

`(n + 1)(2c)^(1//n)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given, `a_(1) a_(2) a_(3) ...a_(n) =c`
`rArr a_(1) a_(2) a_(3) ...(a_(n-1)) (2a_(n)) = 2c`...(i)
`:. (a_(1) + a_(2) + a_(3) + ...+ 2a_(n))/(n) ge (a_(1).a_(2).a_(3)...2a_(n))^(1//n)` [using AM `ge` GM]
`rArr a_(1) + a_(2) + a_(3) + ...+ 2a_(n) ge n(2c)^(1//n)` [from Eq. (i)]
`rArr` Minimum value of
`a_(1) + a_(2) + a_(3) + ...+ 2a_(n) = n(2c)^(1//n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2, .....,a_n are positive real numbers whose product is a fixed number c , then the minimum value of a_1+a_2+.........+a_(n-1)+2a_n is a. a_(n-1)+2a_n b. (n+1)c^(1//n) c. 2n c^(1//n) d. (n)(2c)^(1//n)

The real number x when added to its inverse given the minimum value of the sum at x equal to 1 (b) -1 (c) -2 (d) 2

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)

If he expression [m x-1+(1//x)] is non-negative for all positive real x , then the minimum value of m must be -1//2 b. 0 c. 1//4 d. 1//2

If a_1, a_2, a_n are in A.P. with common difference d!=0 , then the sum of the series sind[seca_1seca_2+(sec)_2seca_3+....+s e ca_(n-1)(sec)_n] is : a. cos e ca_n-cos e ca b. cota_n-cota c. s e ca_n-s e ca d. t a na_n-t a na

.Let a_1, a_2,............ be positive real numbers in geometric progression. For each n, let A_n G_n, H_n , be respectively the arithmetic mean, geometric mean & harmonic mean of a_1,a_2..........a_n . Find an expression ,for the geometric mean of G_1,G_2,........G_n in terms of A_1, A_2,........ ,A_n, H_1, H_2,........,H_n .

The terms a_1, a_2, a_3 from an arithmetic sequence whose sum s 18. The terms a_1+1,a_2, a_3,+2, in that order, form a geometric sequence. Then the absolute value of the sum of all possible common difference of the A.P. is ________.

If cos4x=a_0+a_1cos^2x+a^2cos^4x is true for all values of x in R , then the value of 5a_0+a_1+a_2 is_______

Le a_1, a_2, a_3, ,a_(11) be real numbers satisfying a_2=15 , 27-2a_2>0a n da_k=2a_(k-1)-a_(k-2) for k=3,4, , 11. If (a1 2+a2 2+...+a 11 2)/(11)=90 , then the value of (a1+a2++a 11)/(11) is equals to _______.