Home
Class 12
MATHS
If x1 , x2, ..., xn are any real number...

If `x_1 , x_2, ..., x_n` are any real numbers and n is anypositive integer, then

A

`n underset(i=1)overset(n)sum x_(i)^(2) lt (underset(i=1)overset(n)sum x_(i))^(2)`

B

`n underset(i=1)overset(n)sum x_(i)^(2) ge (underset(i=1)overset(n)sum x_(i))^(2)`

C

`n underset(i=1)overset(n)sum x_(1)^(2) ge n (underset(i=1)overset(n)sum x_(i))^(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

Since, `x_(1) , x_(2),..,x_(n)` are positive real numbers.
`:.` Using nth power mean inequality
`(x_(1)^(2) + x_(2)^(2) + ...+ x_(n)^(2))/(n) ge ((x_(1) + x_(2) + ...+ x_(n))/(n))^(2)`
`rArr (n^(2))/(n) (underset(i=1)overset(n)sum x_(1)^(2)) ge (underset(i=1)overset(n)sum x_(i))^(2) rArr n (underset(i=1)overset(n)sumx_(i)^(2)) ge (underset(i=1)overset(n) sum x_(i))^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are positive real numbers and m, n are any positive integers, then Prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt =1/4

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

Let f(x)=A x^2+B x+c ,w h e r eA ,B ,C are real numbers. Prove that if f(x) is an integer whenever x is an integer, then the numbers 2A ,A+B ,a n dC are all integer. Conversely, prove that if the number 2A ,A+B ,a n dC are all integers, then f(x) is an integer whenever x is integer.

Let x_1, x_2,...,x_n be positive real numbers and we define S=x_1+x_2+.....+x_ndot Prove that (1+x_1)(1+x_2)...(1+x_n)lt=1+S+(S^2)/(2!)+(S^3)/(3!)+...+(S^n)/(n !)

if f(x)=(a-x^n)^(1/n), where a > 0 and n is a positive integer, then f(f(x))= (i) x^3 (ii) x^2 (iii) x (iv) -x

Derivative of f(x)=x^n is nx^(n-1) for any positive integer n.

If the mean of the set of numbers x_1,x_2, x_3, ..., x_n is barx, then the mean of the numbers x_i+2i, 1 lt= i lt= n is

If n is a positive integer and r is a nonnegative integer, prove that the coefficients of x^r and x^(n-r) in the expansion of (1+x)^(n) are equal.