Home
Class 12
MATHS
For a positive integer n let a(n)=1+1/2+...

For a positive integer `n` let `a(n)=1+1/2+1/3+1/4+1/((2^n)-1)dot` Then `a(100)lt=100` b. `a(100)dot> 100` c. `a(200)lt=100` d. `a(200)lt=100`

A

`a (100) le 100`

B

`a (100) gt 100`

C

`a (200) le 100`

D

`a (200) gt 100`

Text Solution

Verified by Experts

The correct Answer is:
A, D

Given, `a (n) = 1 + (1)/(2) + (1)/(3) + (1)/(4) + ...+ (1)/(2^(n) -1)`
`= 1 + ((1)/(2) + (1)/(3)) + ((1)/(4) + ...+ (1)/(7)) + ((1)/(8) + ...+ (1)/(15)) + ...+ ((1)/(2^(n-1)) + ...+ (1)/(2^(n) -1))`
`lt 1 + ((1)/(2) + (1)/(2)) + ((1)/(4) + (1)/(4) + ...+ (1)/(4)) + ((1)/(8) + (1)/(8) + ...+ (1)/(8)) + ..+ ((1)/(2^(n-1)) + ....+ (1)/(2^(n-1)))`
`= 1 + (2)/(2) + (4)/(4) + (8)/(8) + ...+ (2^(n-1))/(2^(n-1))`
`= ubrace(1 + 1 + 1 + 1 + ...+ 1)_("(n) times") =n`
Thus, `a (100) le 100`
Therefore, (a) is the answer.
Again, `a(n) = 1 + (1)/(2) + ((1)/(3) + (1)/(4)) + ((1)/(5) + ...+ (1)/(8)) + ...+ ((1)/(2^(n-1) +1) + ...+ (1)/(2^(n))) - (1)/(2^(n))`
`gt1 + (1)/(2) + ((1)/(4) + (1)/(4)) + ((1)/(8) + (1)/(8) + ...+ (1)/(8)) + ..+ ((1)/(2^(n)) + ...+ (1)/(2^(n))) - (1)/(2^(n))`
`= 1 + (1)/(2) + (2)/(4) + (4)/(8) + ...+ (2^(n-1))/(2^(n)) - (1)/(2^(n))`
`= 1 + ubrace((1)/(2) + (1)/(2) + (1)/(2) + ...+ (1)/(2))_("n times") - (1)/(2^(n)) = (1 -(1)/(2^(n))) + (n)/(2)`
Therefore, `a (200) gt (1 -(1)/(2^(200))) + (200)/(2) gt 100`
Therefore, (d) is also the answer
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of positive integer solutions of 24x lt 100 is

Find a positive number small than (1)/(2^(100)) . Justify.

If n is a positive integer, prove that |I m(z^n)|lt=n|Im(z)||z|^(n-1.)

Let n be a positive integer such that sinpi/(2n)+cospi/(2n)=(sqrt(n))/2dot Then 6lt=nlt=8 (b) 4 ltnle8 c) 4lenle8 d) 4ltnlt8

Let a_(n) be the n^(th) term of a G.P of positive integers. Let sum_(n = 1)^(100) a _(2n) = alpha and sum_(n = 1)^(100) a_(2n +1) = beta such that alpha != beta . Then the common ratio is

Let f(x)=x+f(x-1)forAAx in RdotIff(0)=1,fin df(100)dot

Find the number of irrational terms in the expansion of (5^(1//6)+2^(1//8))^(100)dot

Prove that (^n C_0)/1+(^n C_2)/3+(^n C_4)/5+(^n C_6)/7+.....+dot=(2^n)/(n+1)dot

Number of ways in which 200 people can be divided in 100 couples is a. ((200)!)/(2^(100)(100 !)) b. 1xx3xx5xxxx199 c. ((101)/2)""((102)/2)"".............((200)/2) d. ((200)!)/((100)!)