Home
Class 12
MATHS
The minimum value of the sum of real num...

The minimum value of the sum of real number `a^(-5),a^(-4),3a^(-3),1,a^8,a n da^(10)w i t ha >0` is

Text Solution

Verified by Experts

The correct Answer is:
8

Using `AM ge GM`
`(a^(-5) + a^(-4) + a^(-3) + a^(-3) + a^(-3) + 1 + a^(8) + a^(10))/(8)`
`ge (a^(-5).a^(-4).a^(-3).a^(-3).1.a^(8).a^(10))^((1)/(8))`
`rArr a^(-5) + a^(-4) + 3a^(-3) + 1 + a^(8) + a^(10) ge 8.1`
Hence, minimum value is 8
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the products of the ten numbers +-1,+-2,+-3,+-4,a n d+-5 taking two at a time.

If a ,b ,c are non-zero real numbers, then the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) is not divisible by prime number.

Find the values of the real numbers x and y, if the complex numbers (3 - i) x - (2-i) y + 2i + 5 and 2x + (-1 + 2i)y + 3 + 2i are equal

The set of all real numbers a such that a^2+2a ,2a+3,a n da^2+3a+8 are the sides of a triangle is_____

Let a is a real number satisfying a^3+1/(a^3)=18 . Then the value of a^4+1/(a^4)-39 is ____.

The value of sum_(i=1)^(13) (n^(n) + i^(n-1)) is

The real number x when added to its inverse given the minimum value of the sum at x equal to 1 (b) -1 (c) -2 (d) 2

Find number of values of complex numbers omega satisfying the system of equaltion z^(3)=-(bar(omega))^(7) and z^(5).omega^(11)=1