Home
Class 12
MATHS
Let alpha in (0, pi//2) be fixed. If the...

Let `alpha in (0, pi//2)` be fixed. If the integral `int("tan x" + "tan" alpha)/("tan x" - "tan" alpha)dx = A(x)"cos 2 alpha+B(x)`
`"sin" 2 alpha +C`,where C is a constant of integration, then the functions A(x) and B(x) are respectively.

A

`x+alpha "and log"_(e)|"sin"(x+alpha)|`

B

`x-alpha "and log"_(e)|"sin"(x-alpha)|`

C

`x-alpha "and log"_(e)|"cos"(x-alpha)|`

D

`x+alpha "and log"_(e)|"sin"(x-alpha)|`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I = int(tan x + tan alpha)/(tan x - tan alpha)dx, alpha in (0,(pi)/(2))`
`= int((sinx)/(cosx)+(sin alpha)/(cos alpha))/((sinx)/(cosx)-(sin alpha)/(cos alpha))dx`
`=int(sin x cos alpha + sin alpha cos x)/(sin x cos alpha - sin alpha cos x)dx`
`=int(sin(x+alpha))/(sin(x-alpha))dx`
Now, put `x-alpha = t rArr dx = dt, so`
`I=int(sin(t+2 alpha))/(sin t)dt`
`=int(sin t cos 2 alpha + sin 2 alpha cos t)/(sin t)dt`
`=int(cos 2 alpha + sin 2 alpha (cos t)/(sin t))dt`
`= t(cos 2 alpha)+(sin 2 alpha)log_(e)|sin t|+C`
`=(x-alpha) cos 2 alpha +(sin 2 alpha)log_(e)|sin(x-alpha)|+C`
`= A(x) cos 2 alpha + B(x) sin 2 alpha + C` (given)
Now on comparing, we get
`A(x) = x - alpha and B(x) = log_(e)|sin(x-alpha)|`
Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the functions tan^(2)(2x-3)

Integrate the functions (sec^2x)/(sqrt(tan^(2)x+9))

Integrate the function (sec^(2)x)/(sqrt(tan^(2)x+4))

Integrate the functions (sec^(2)x)/(sqrt(4-tan^(2)x))

IF tan alpha = ( sin alpha - cos alpha )/( sin alpha + cos alpha) , then sin alpha + cos alpha is

(cos2 x - cos2 alpha)/(cos x - cos alpha)

Let I_n=int tan^n x dx, (n>1) . If I_4+I_6=a tan^5 x + bx^5 + C , Where C is a constant of integration, then the ordered pair (a,b) is equal to :

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

Prove that sin 4alpha = 4 tan alpha (1 - tan^(2) alpha)/((1 + tan^(2) alpha)^(2))

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then