Home
Class 12
MATHS
"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"...

`"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C`,where, C is a constant of integration, then

A

`A=(1)/(27)andf(x)=9(x-1)`

B

`A=(1)/(81)andf(x)=3(x-1)`

C

`A=(1)/(54)andf(x)=3(x-1)`

D

`A=(1)/(54)andf(x)=9(x-1)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I+int(dx)/((x^(2)-2x+10)^(2))=int(dx)/(((x-1)^(2)+3^(2))^(2))` Now, put `x-1 = 3 tan theta rArr dx = 3 sec^(2)theta d theta`
So, `I = int(3sec^(2)theta d theta)/((3^(2)tan^(2)theta+3^(2))^(2))=int(3sec^(2)theta d theta )/(3^(4)sec^(4)theta)`
`=(1)/(27)intcos^(2)theta d theta = (1)/(27)int(1+cos 2 theta)/(2)d theta`
`" "[therefore cos^(2)theta=(1+cos2theta)/(2)]`
`=(1)/(54)int(1+cos 2 theta)d theta = (1)/(54)(theta+(sin 2 theta)/(2))+C`
`=(1)/(54)tan^(-1)((x-1)/(3))+(1)/(108)((2 tan theta)/(1 + tan^(2)theta))+C`
`" "[therefore sin 2 theta = (2 tan theta)/(1+tan^(2)theta)]`
`=(1)/(54)tan^(-1)((x-1)/(3))+(1)/(54)(((x-1)/(3)))/(1+((x-1)/(3))^(2))+C`
`=(1)/(54)tan^(-1)((x-1)/(3))+(1)/(18)((x-1)/((x-1)^(2)+3^(2)))+C`
`=(1)/(54)tan^(-1)((x-1)/(3))+(1)/(18)((x-1)/(x^(2)-2x+10))+C`
`=(1)/(54)[tan^(-1)((x-1)/(3))+(3(x-1))/(x^(2)-2x + 10)]+C`
It is given, that
`I=A[tan^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x + 10)]+C`
On comparing, we get `A=(1)/(54)and f(x) = 3(x-1)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

int("sin"(5x)/(2))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

int(sin^(2)x)/(sec^(2)x-cos^(2)x) dx = lambda x - 1/mu tan^(-1)((tanx)/sqrt2)+C where C is constant of integration, then lambda^(2) +mu^(2) is equal to

int 5^(x+tan^(-1)x)*((x^(2)+2)/(x^(2)+1))dx .

Evaluate: int(x^2-1)/((x^4+3x^2+1)tan^(-1)(x+1/x))dx

Let alpha in (0, pi//2) be fixed. If the integral int("tan x" + "tan" alpha)/("tan x" - "tan" alpha)dx = A(x)"cos 2 alpha+B(x) "sin" 2 alpha +C ,where C is a constant of integration, then the functions A(x) and B(x) are respectively.