Home
Class 12
MATHS
"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)...

`"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C` where, C is a constant of integration, then the function f(x) is equal to

A

`-(1)/(6x^(3))`

B

`-(1)/(2x^(3))`

C

`-(1)/(2x^(2))`

D

`(3)/(x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I = int(dx)/(x^(3)(1+x^(6))^(2//3))`
`=int(dx)/(x^(3)x^(4)((1)/(x^(6))+1)^(2//3))=int(dx)/(x^(7)((1)/(x^(6))+1)^(2//3))`
Now, put `(1)/(x^(6))+1 = t^(3)`
`rArr" " -(6)/(x^(7))dx = 3t^(2)dt`
`rArr" "(dx)/(x^(7))=-(t^(2))/(2)dt`
So, `I=int(-(1)/(2)t^(2)dt)/(t^(2))= -(1)/(2)int dt`
`= -(1)/(2)t+C = -(1)/(2)((1)/(x^(6))+1)^(1//3)+C" "[therefore t^(3)=(1)/(x^(6))+1]`
`= -(1)/(2)(1)/(x^(2))(1+x^(6))^(1//3)+C`
`= x*f(x)*(1+x^(6))^(1//3)+C" "["given"]`
On comparing both sides, we get
`f(x) = -(1)/(2x^(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

Integrate the functions 1/(x-x^(3))

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

Integrate the function (3x^(2))/(x^(6)+1)

int("sin"(5x)/(2))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

Integrate the functions (x^(2))/(1-x^(6))

Integrate the functions (6x^(2))/(x^(6)+1)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

Let I_n=int tan^n x dx, (n>1) . If I_4+I_6=a tan^5 x + bx^5 + C , Where C is a constant of integration, then the ordered pair (a,b) is equal to :