Home
Class 12
MATHS
int("sin"(5x)/(2))/("sin"(x)/(2))dx is e...

`int("sin"(5x)/(2))/("sin"(x)/(2))dx` is equal to (where, C is a constant of integration)

A

`2x + "sin" x + 2 "sin" 2x + C`

B

`x + 2"sin" x + 2 "sin" 2x + C`

C

`x + 2"sin" x + "sin" 2x + C`

D

`2x + "sin" x + "sin" 2x + C`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I=int("sin"(5x)/(2))/("sin"(x)/(2))dx = int("2 sin"(5x)/(2)"cos"(x)/(2))/("2 sin"(x)/(2)"cos"(x)/(2))dx` [multiplying by `"2 cos"(x)/(2)` in numerator and denominator]
`=int(sin3x + sin2x)/(sin x)dx`
`[therefore 2 sin A cos B = sin(A+B)+sin(A-B)and sin 2 A = 2 sin A cos A]`
`= int((3 sin x - 4 sin^(3) x)+2 sin x cos x)/(sin x)dx" "[therefore sin 3x = 3 sin x -4 sin^(3) x]`
`= int(3-4 sin^(2)x + 2 cos x)dx`
`=int[3-2(1-cos 2x)+2 cos x]dx" "[therefore 2 sin^(2)x=1 - cos 2x]`
`= int[3-2+2 cos 2x + 2 cos x]dx`
`=[1+2 cos 2x + 2 cos x]dx`
`=x+2 sin x + sin 2x + C`
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

The integral int sec^(2//3) "x cosec"^(4//3)"x dx" is equal to (here C is a constant of integration)

The integral intcos(log_(e)x)dx is equal to: (where C is a constant of integration)

Let n ge 2 be a natural number and 0 lt theta lt (pi)/(2) , Then, int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta is equal to (where C is a constant of integration)

int(sin^(2)x+cos^(2)x)/(sin^(2)xcos^(2)x)dx is equal to

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

int(sin2x)/(sin5xsin3x)dx is equal to

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

int(sin(2x)/(sin^4+cos^4x)dx is equal to

Let alpha in (0, pi//2) be fixed. If the integral int("tan x" + "tan" alpha)/("tan x" - "tan" alpha)dx = A(x)"cos 2 alpha+B(x) "sin" 2 alpha +C ,where C is a constant of integration, then the functions A(x) and B(x) are respectively.