Home
Class 12
MATHS
int(3x^(13)+2x^(11))/((2x^4+3x^2+1)^4)dx...

`int(3x^(13)+2x^(11))/((2x^4+3x^2+1)^4)dx`

A

`(x^(4))/(6(2x^(4)+3x^(2)+1)^(3))+C`

B

`(x^(12))/(6(2x^(4)+3x^(2)+1)^(3))+C`

C

`(x^(4))/((2x^(4)+3x^(2)+1)^(3))+C`

D

`(x^(12))/((2x^(4)+3x^(2)+1)^(3))+C`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I=int(3x^(13)+2x^(11))/((2x^(4)+3x^(2)+1)^(4))dx = int((3)/(x^(3))+(2)/(x^(5)))/((2+(3)/(x^(2))+(1)/(x^(4)))^(4))dx` [on dividing numerator and denominator by `x^(16)`]
Now, put `2 + (3)/(x^(2))+(1)/(x^(4))=t`
`rArr ((-6)/(x^(3))-(4)/(x^(5)))dx = dt rArr ((3)/(x^(3))+(2)/(x^(5)))dx = - (dt)/(2)`
So, `I = int(-dt)/(2t^(4))= -(1)/(2)xx(t^(-4+1))/(-4+1)+C = (1)/(6t^(3))+C`
`= (1)/(6(2+(3)/(x^(2))+(1)/(x^(4)))^(3))+C" "[therefore t = 2 + (3)/(x^(2))+(1)/(x^(4))]`
`= (x^(12))/(6(2x^(4)+3x^(2)+1)^(3))+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

int(dx)/(2x+4-x^(2))

Evaluate: int(x^2-1)/((x^4+3x^2+1)tan^(-1)(x+1/x))dx

int((2x+1))/((x^(2)+4x+1)^(3//2))dx

int (x^3-1)/((x^4+1)(x+1)) dx is

"If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

Evaluate int (x^(2)-sqrt(3x)+1)/(x^(4)-x^(2)+1)dx