Home
Class 12
MATHS
If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2...

If `int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C`, where C is a constant of integration, then f(x) is equal to

A

`(2)/(3)(x+2)`

B

`(1)/(3)(x+4)`

C

`(2)/(3)(x-4)`

D

`(1)/(3)(x+1)`

Text Solution

Verified by Experts

The correct Answer is:
B

....(i) We have, `int(x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C`
Let `I=int(x+1)/(sqrt(2x-1))dx`
Put `2x - 1 = t^(2) rArr 2dx = 2tdt rArr dx = tdt`
`I=int((t^(2)+1)/(2)+1)/(t)tdt = (1)/(2)int(t^(2)+3)dt" "[therefore 2x-1=t^(2) rArr x = (t^(2)+1)/(2)]`
`=(1)/(2)((t^(3))/(3)+3t)+C=(t)/(6)(t^(2)+9)+C`
`=(sqrt(2x-1))/(6)(2x-1+9)+C" "[therefore t = sqrt(2x-1)]`
`=(sqrt(2x-1))/(6)(2x+8)+C`
`=(x+4)/(3)sqrt(2x-1)+C`
On comparing it with Eq. (i), we get `f(x)=(x+4)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

int(sin^(2)x)/(sec^(2)x-cos^(2)x) dx = lambda x - 1/mu tan^(-1)((tanx)/sqrt2)+C where C is constant of integration, then lambda^(2) +mu^(2) is equal to

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log_(e)(f(x))+g(x)+C where C is the constant of integration and f(x) is positive. Then f(x)+g(x) has the value equal to

int("sin"(5x)/(2))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C ,for a suitable chosen integer m and a function A(x), where C is a constant of integration, then (A(x))^m equals

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then

Integrate (x + 1)sqrt(2x + 3)