Home
Class 12
MATHS
If int sqrt(1-x^2)/x^4dx=A(x).(sqrt(1-x^...

If `int sqrt(1-x^2)/x^4dx=A(x).(sqrt(1-x^2))^m` where `A(x)` is a function of `x` then `(A(x))^m`= (A) `-1/(27x^9)` (B) `1/(27x)^9` (C) `1/(3x^9)` (D) `-1/(3x^9)`

A

`(1)/(9x^(4))`

B

`(-1)/(3x^(3))`

C

`(-1)/(27x^(9))`

D

`(1)/(27x^(0))`

Text Solution

Verified by Experts

The correct Answer is:
C

....(i) We have, `int sqrt(1-x^(2))/(x^(4))dx = A(x)(sqrt(1-x^(2))^(m)+ C`
Let `I = int sqrt(1-x^(2))/(x^(4))dx = int sqrt(x^(2)((1)/(x^(2))-1))/x^(4)dx`
`= int (x sqrt((1)/(x^(2))-1))/(x^(4))dx = int (1)/(x^(3))sqrt((1)/(x^(2))-1)dx`
`=int(x sqrt((1)/(x^(2))-1))/(x^(4))dx=int(1)/(x^(3))sqrt((1)/(x^(2))-1)dx`
Put `(1)/(x^(2))-1 = t^(2) rArr (-2)/(x^(3))dx = 2t dt rArr (1)/(x^(3))dx = - t dt`
`therefore I = -intt^(2)dt = -(t^(3))/(3)+C`
`= -(1)/(3)((1-x^(2))/(x^(2)))^(3//2)+C [therefore t = ((1)/(x^(2))-1)^(1//2)]`
...(ii) `= -(1)/(3)(1)/(x^(3))(sqrt(1-x^(2)))^(3)+C`
On comparing Eqs. (i) and (ii), we get `A(x) = -(1)/(3x^(3)) and m = 3`
`therefore (A(x))^(m) = (A(x))^(3) = -(1)/(27x^(9))`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int1/(16+9x^(2))dx

(1)/(sqrt(9 + 8 x - x^(2)))

If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C ,for a suitable chosen integer m and a function A(x), where C is a constant of integration, then (A(x))^m equals

If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x^2))+bx+c then

(2x + 1)/(sqrt(9 + 4 x - x^(2)))

lim_(xto0)(sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3) is

Integrate (8)/(sqrt(1-(4x)^(2)))+(27)/(sqrt(1-9x^(2)))-(15)/(1+25x^(2)) with respect to x .

If int ((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-1/(f(x)) where f(x) is of the form of ax^(2)+bx+c then (a+b+c) equals

If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Asqrt(1-9x^(2))+B(cos^(-1)3x)^(3)+C, then A-B is