Home
Class 12
MATHS
Let n ge 2 be a natural number and 0 lt ...

Let `n ge 2` be a natural number and `0 lt theta lt (pi)/(2)`, Then, `int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta` is equal to (where C is a constant of integration)

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I = int((sin^(n)theta - sin theta)^(1//n) cos theta)/(sin^(n+1)theta)d theta`
Put `sin theta = t rArr cos theta d theta = dt`
`therefore I = int((t^(n)-t)^(1//n))/(t^(n+1))dt`
`=int([t^(n)(1-(t)/(t^(n)))]^(1//n))/(t^(n+1))dt`
`= int(t(1-1//t^(n-1))^(1//n))/(t^(n+1))dt = int((1-1//t^(n-1))^(1//n))/(t^(n))dt`
Put `1-(1)/(t^(n-1))=u`
or `1 - t^(-(n-1))=u rArr ((n-1))/(t^(n))dt = du`
`rArr" "(dt)/(t^(n))=(du)/(n-1)`
`rArr I = int(u^(1//n)du)/(n-1)=(u^(1/n+1))/((n-1)((1)/(n)+1))+C`
`=(n(1-(1)/(t^(n-1)))^((n+1)/(n)))/((n-1)(n+1))+C`
`(n(1-(1)/(sin^(n-1) theta))^((n+1)/(n)))/(n^(2)-1)+C" "[therefore u=1-(1)/(t^(n-1))and t = sin theta]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

If pi/2 lt theta lt 3 pi/2 then sqrt( (1-sin theta)/(1+ sin theta )) - tan theta is

(1)/(sin^(2)theta)-(cos^(2)theta)/(sin^(2) theta) =___.

Prove that (sin theta+sin 2theta)/(1+cos theta+cos 2 theta)=tan theta

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

((1+sin theta+icos theta)/(1+sin theta - icos theta))^(n)=

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .