Home
Class 12
MATHS
If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2...

If `f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0)`, and f(0) = 0, then the value of f(1) is

A

`-(1)/(2)`

B

`-(1)/(4)`

C

`(1)/(4)`

D

`(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have, `f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx`
`=int(5((x^(8))/(x^(14)))+7((x^(6))/(x^(14))))/((x^(2)/(x^(7))+(1)/(x^(7))+(2x^(7))/(x^(7)))^(2))dx`
(dividing both numerator and denominator by `X^(14)`)
`=int(5x^(-6)+7x^(-8))/((x^(-5)+x^(-7)+2)^(2))dx`
Let `x^(-5) + x^(-7)+2 = t`
`rArr (-5x^(-6)-7x^(-8))dx = dt`
`rArr (5x^(-6)+7x^(-8))dx = - dt`
`therefore f(x) = int - (dt)/(t^(2))= - intt^(-2)dt`
`= -(t^(-2+1))/(-2+1)+C=-(t^(-1))/(-1)+C=(1)/(t)+C`
`=(1)/(x^(-5)+x^(-7)+2)+C=(x^(7))/(2x^(7)+x^(2)+1)+C`
`therefore f(0)=0`
`therefore 0 = (0)/(0+0+1)+C rArr C = 0`
`therefore f(x)=(x^(7))/(2x^(7)+x^(2)+1)`
`rArr" "f(1)=(1)/(2(1)^(7)+1^(2)+1)=(1)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

"If " f(x)=int(dx)/(x^(1//3)+2) " and "f(0)=12log_(e)2, " then the value of " f(-1) " is"-.

If f(x)=ax^(2)+bx+c and f(-1) ge -4 , f(1) le 0 and f(3) ge 5 , then the least value of a is

Suppose that f(x) is a function of the form f(x) =(a x^8+b x^6+c x^4+dx^2+15 x+1)/x ,(x!=0) dot If f(5)= -28 then the value of f(-5)/14 is____

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

If f(x)={(1-cos(1-cos x/2))/(2^m x^n)1x=0,x!=0 and f(0)=1 is continuous at x=0 then the value of m+n is a. 2 b. 3 c. -3 d. 7