Home
Class 12
MATHS
If x^2!=n pi-1, n in N. Then, the value ...

If `x^2!=n pi-1, n in N`. Then, the value of `int x sqrt((2sin(x^2+1)-sin2(x^2+1))/(2sin(x^2+1)+sin2(x^2+1)))dx` is equal to:

A

`(1)/(2)log_(e)|sec(x^(2)-1)|+C`

B

`log_(e)|sec((x^(2)-1)/(2))|+C`

C

`log_(e)|(1)/(2)sec^(2)(x^(2)-1)|+C`

D

`(1)/(2)log_(e)|sec^(2)((x^(2)-1)/(2))|+C`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I = intx sqrt((2 sin(x^(2)-1)-sin 2(x^(2)-1))/(2 sin(x^(2)-1)+sin 2(x^(2)-1)))dx`
Put `(x^(2)-1)/(2)=theta rArr x^(2)-1 = 2theta rArr 2x dx = 2 d theta`
`rArr" ""x dx"=d theta`
Now, `I = intsqrt((2sin 2 theta - sin 4 theta)/(2 sin 2 theta + sin 4 theta))d theta`
`=int sqrt((2sin 2 theta - 2 sin 2 theta cos 2 theta)/(2sin 2 theta + 2 sin 2 theta cos 2 theta))d theta" "(therefore sin 2 A = 2 sin A cos A)`
`=int sqrt((2 sin 2 theta(1-cos 2 theta))/(2 sin 2 theta(1+cos 2 theta)))d theta`
`=int sqrt((1-cos 2 theta)/(1+cos 2 theta))d theta = int sqrt((2sin^(2)theta)/(2 cos^(2)theta))d theta`
`[therefore 1-cos 2 A = 2 sin^(2)A and 1 + cos 2 A = 2 cos^(2) A]`
`=int sqrt(tan^(2)theta) d theta = int tan theta d theta`
`=log_(e)|sec theta|+C=log_(e)|sec((x^(2)-1)/(2))|+C[therefore theta = (x^(2)-1)/(2)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin^(2)x+cos^(2)x)/(sin^(2)xcos^(2)x)dx is equal to

If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x

int(e^(x)(1+x))/(sin^(2)(xe^(x)))dx

find the maximum value of f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)

sin^(-1) ((2x)/(1 + x^(2)))

int(2sin^(-1)x)/(sqrt(1-x^(2)))dx

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to