Home
Class 12
MATHS
int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin...

`int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx`

A

`(1)/(3(1+tan^(3)x))+C`

B

`(-1)/(3(1+tan^(3)x))+C`

C

`(1)/(1+cot^(3)x)+C`

D

`(-1)/(1+cot^(3)x)+C`

Text Solution

Verified by Experts

The correct Answer is:
B

We have, `I = int(sin^(2)x*cos^(2)x)/((sin^(6)x + cos^(3)x*sin^(2)x+sin^(3)x*cos^(2)x+cos^(5)x)^(2))dx`
` = int(sin^(2)x cos^(2)x)/{{sin^(3)x(sin^(2) x + cos^(2)x)+cos^(3)x(sin^(2)x +cos^(2)x)}^(2))dx`
`=int(sin^(2)x cos^(2) x)/((sin^(3)x + cos^(3)x)^(2))dx=int(sin^(2)x cos^(2)x)/(cos^(6)x(1+tan^(3)x)^(2))dx`
`=int(tan^(2)x sec^(2)x)/((1+tan^(3)x)^(2))dx`
Put `tan^(3) x = t rArr 3 tan^(2)x sec^(2) xdx = dt`
`therefore" "I = (1)/(3)int(dt)/((1+t)^(2))`
`rArr" "I = (-1)/(3(1+t))+C rArr I=(-1)/(3(1+tan^(3)x))+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

(cos2x)/(sin ^(2) x cos^(2) x)

(cos x)/(sin^(2)x)

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(sin^(2)x+cos^(2)x)/(sin^(2)xcos^(2)x)dx is equal to

(sin x - sin 3x)/( sin ^(2) x - cos ^(2) x) = 2 sin x

Integrate the following with respect to x. (i) int(2x + 4)/(x^2 + 4x + 6) dx " " (ii) int (e^x)/(e^x - 1) dx " " (iii) int 1/(x log x) dx (iv) int(sin x + cos x)/(sin x - cos x) dx " " (v) int (cos 2x)/((sin x + cos x)^2) dx .

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

int (sin^(8) x - cos ^(8) x)/( 1 - 2 sin^(2) x cos^(2) x) dx is