Home
Class 12
MATHS
Let f: R->R and g: R->R be two non-const...

Let `f: R->R` and `g: R->R` be two non-constant differentiable functions. If `f^(prime)(x)=(e^((f(x)-g(x))))g^(prime)(x)` for all `x in R` , and `f(1)=g(2)=1` , then which of the following statement(s) is (are) TRUE? `f(2)<1-(log)_e2` (b) `f(2)>1-(log)_e2` (c) `g(1)>1-(log)_e2` (d) `g(1)<1-(log)_e2`

A

`f(2) lt 1 - log_(e)2`

B

`f(2) gt 1 - log_(e) 2`

C

`g(1) gt 1 - log_(e) 2`

D

`g(1) lt 1 - log_(e) 2`

Text Solution

Verified by Experts

The correct Answer is:
B, C

We have, `f'(x)=e^((f(x)-g(x)))g'(x)AA x in R`
`rArr" "f'(x)=(e^(f(x)))/(e^g(x))g'(x)`
`rArr" "(f'(x))/(e^(f(x)))=(g'(x))/(e^(g(x)))`
`rArr" "e^(-f(x))f'(x)=e^(-g(x))g'(x)`
On integrating both side, we get
`e^(-f(x))=e^(-g(x))+C`
At x 1
`{:(e^(-f(1))=e^(-g(1))+C,,),(e^(-1)=e^(-g(1))+C," "[therefore f(1)=1]," "...(i)):}`
At x = 2
`{:(e^(-f(2))=e^(-g(2))+C,,),(rArr" "e^(-f(2))=e^(-1)+C," "[therefore g(2)=1]," "...(ii)):}`
From Eqs. (i) and (ii)
`{:(e^(-f(2))=2e^(-1)-e^(-g(1)),),(e^(-f(2)) gt 2e^(-1)," "...(iii)):}`
We know that, `e^(-x)` is decreasing
`therefore" "-f(2) lt log_(e)2-1`
`" "f(2) gt 1-log_(e)2`
`rArr" "e^(-g(1))+e^(-f(2))=2e^(-1)" "["from Eq. (iii)"]`
`rArr" "e^(-g(1)) lt 2e^(-1)`
`" "-g(1) lt log_(e)2-1`
`rArr" "g(1) gt 1-log_(e)2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R to R and h:R to R be differentiable functions such that f(x)=x^(3)+3x+2,g(f(x))=x and h(g(x))=x for all x in R . Then,

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2. f(1)=1, then

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f: R->R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f^(prime)(y)+f^(prime)(x)f(y) for all x ,\ y in R . Then, the value of (log)_e(f(4)) is _______

If f:R→R and g:R→R be two functions defined as below, then find fog(x) and gof(x); f(x)=2x+3,g(x)=x^2+5

Find function f(x) which is differentiable and satisfy the relation f(x+y)=f(x)+f(y)+(e^(x)-1)(e^(y)-1)AA x, y in R, and f'(0)=2.

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-constant, and differentiable function such that f^(prime)(x)<2f(x)a n df(1/2)=1 . Then the value of int_(1/2)^1f(x)dx lies in the interval (a) (2e-1,2e) (b) (3-1,2e-1) (c) ((e-1)/2,e-1) (d) (0,(e-1)/2)

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then