Home
Class 12
MATHS
Let f: R->R be a differentiable funct...

Let `f: R->R` be a differentiable function with `f(0)=1` and satisfying the equation `f(x+y)=f(x)f^(prime)(y)+f^(prime)(x)f(y)` for all `x ,\ y in R` . Then, the value of `(log)_e(f(4))` is _______

Text Solution

Verified by Experts

The correct Answer is:
2

Given, `f(x+y)=f(x)f'(y)+f'(x)f(y), AAx,y in R and f(0)=1`
Put x = y = 0, we get `f(0) = f(0) f'(0) + f'(0) f(0)`
`rArr 1 = 2f'(0) rArr f'(0)=(1)/(2)`
Put x = x and y = 0, we get `f(x) = f(x) f'(0) + f'(x) f(0)`
`rArr" "f(x) = (1)/(2) f(x) + f'(x)`
`rArr" "f'(x)=(1)/(2)f(x) rArr (f'(x))/(f(x))=(1)/(2)`
On integrating, we get `log f(x) =(1)/(2)x+C`
`rArr" "f(x)=Ae^((1)/(2)x), "where e"^(c) = A`
If `f(0) = 1, "then" A = 1`
`"Hence"," "f(x)=e^((1)/(2)x)`
`rArr" " log_(e)f(x) = (1)/(2)x`
`rArr" "log_(e)f(4)=(1)/(2) xx 4 = 2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

A function f: R -> R satisfy the equation f (x)f(y) - f (xy)= x+y for all x, y in R and f(y) > 0 , then

Find function f(x) which is differentiable and satisfy the relation f(x+y)=f(x)+f(y)+(e^(x)-1)(e^(y)-1)AA x, y in R, and f'(0)=2.

Solve x dy=(y+x(f(y/x))/(f^(prime)(y/x)))dx

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f'(3) is

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2. f(1)=1, then

The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime)(x^2) for all real xdot Given that f(1)=1 and f^(1)=8 , then the value of f^(prime)(1)+f^(1) is 2 b. 4 c. 6 d. 8

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .