Home
Class 12
MATHS
Evaluate: int(dx)/(x^2(x^4+1)^(3/4))...

Evaluate: `int(dx)/(x^2(x^4+1)^(3/4))`

Text Solution

Verified by Experts

The correct Answer is:
`-((x^(4)+1)^(1//4))/(x)+c`

Let `I=int (dx)/(x^(2)(x^(4)+1)^(3//4))=int(dx)/(x^(2)*x^(3)(1+(1)/(x^(4)))^(3//4))`
Put `1+x^*(-4)=t rArr -(4)/(x^(5))dx = dt`
`therefore" "I=-(1)/(4)int(dt)/(t^(3//4))=-(1)/(4)*(t^(1//4))/(1//4)+c=-(1+(1)/(x^(4)))^(1//4)+c`
`=-((x^(4)+1)^(1//4))/(x)+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(x^2(1+x^5)^(4/5))

Evaluate: int(1+x^4)/((1-x^4)^(3/2))dx

Evaluate: int(dx)/(x^(2/3)(1+x^(2/3)))

Evaluate: int(x^2+1)/(x^4+1)dx

Evaluate: int((1+x^2)/(x^4))dx

Evaluate int(1)/(x(x^(4)+1))dx

Evaluate: int(4x+1)/(x^2+3x+2)

"the integral "int(dx)/(x^2(x^4+1)^(3/4))

Evaluate: int(x^2+4)/(x^4+16)dx

Evaluate int (x^2-1)/(x^4+1)dx