Home
Class 12
MATHS
Integrate the curve (x)/(1+x^(4))...

Integrate the curve `(x)/(1+x^(4))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)"tan"^(-1)(x^(2))+c`

Let `I=int (xdx)/(1+x^(4))=(1)/(2)int(2x)/(1+(x^(2))^(2))dx`
Put `x^(2)=u rArr 2 xdx = du`
`therefore" "I=(1)/(2) int(du)/(1+u^(2))=-(1)/(2)tan^(-1)(u)+x=(1)/(2)tan^(-1)(x^(2))+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the functions (1)/(x^(2)(x^(4)+1)^(3/4))

Integrate the functions (3x)/(1+2x^(4))

Integrate the functions x/(9-4x^(2))

Integrate the functions 1/(x^(2)(x^(4)+1)^(3/4))

Integrate the functions 1/((x^(2)+1)(x^(2)+4))

Integrate the functions (4x^(3))/(sqrt(1-x^(8)))

Integrate the functions (sqrt(x^(2)+1)[log(x^(2)+1)-2logx])/(x^(4))

Integrate the functions e^(x)(1/x-1/(x^(2)))

Integrate (x-1)/(x+1) w.r.t.x