Home
Class 12
MATHS
The integral int sec^(2//3) "x cosec"^(4...

The integral `int sec^(2//3) "x cosec"^(4//3)"x dx"` is equal to (here C is a constant of integration)

A

`3tan^(-1//3)x+C`

B

`-3tan^(-1//3)x+C`

C

`-3cot^(-1//3)x+C`

D

`-(3)/(4)tan^(-4//3)x+C`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I=int sec^((2)/(3))x cos ec^((4)/(3))x dx = int(dx)/(cos^((2)/(3))x sin^((4)/(3))x) int(dx)/(((sin x)/(cos x))^((4)/(3))cos^((4)/(3)) x cos^((2)/(3))x)`
[dividing and multiplying by `cos^(4//3)` x in denominator]
`=int(dx)/(tan^((4)/(3)) x cos^(2) x)=int(sec^(2)xdx)/((tan x)^((4)/(3)))`
Now, put `tan x = t rArr sec^(2) x dx = dt`
`therefore I=int(dt)/(t^(4//3))=(t^((-4)/(3)+1))/((-4)/(3)+1)+C`
`=-3(1)/(t^((1)/(3)))+C =(-3)/((tan x)^((1)/(3)))+C=-3tan^(-(1)/(3))x+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

int("sin"(5x)/(2))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

The integral intcos(log_(e)x)dx is equal to: (where C is a constant of integration)

Integrate: int "cosec"^(3)x dx .

Integrate: int sec^2 2x dx

Integrate: int x^2 e^(2x) dx

Integrate: int x "cosec"^(2) x dx .

If int (x^(6)+7x^(5)+6x^(4)+5x^(3)+4x^(2)+3x+1)e^(x)dx is equal to sum_(k=1)^(alpha) betax^(k).e^(x)+C (where C is constant of integration) then (alpha + beta) is

Find the following integrals int(sec^(2)x)/(cosec^(2)x)dx