Home
Class 12
MATHS
If f(x) is the integral of (2 sin x-sin ...

If f(x) is the integral of `(2 sin x-sin 2 x)/(x^(3)), "where x" ne 0, "then find" lim_(x rarr 0) f'(x)`.

Text Solution

Verified by Experts

The correct Answer is:
1

Given, `f(x)=int((2 sin x - sin 2 x)/(x^(3)))dx`
On differentiation w.r.t.x, we get `f'(x)=(2sin x - sin 2x)/(x^(3))=(2 sin x)/(x)((1-cos x)/(x^(2)))`
`underset(x rarr 0)("lim") f'(x)=underset(x rarr 0)("lim 2")((sin x)/(x))(("2 sin"^(2)(x)/(2))/(x^(2)))`
`=4*1*underset(x rarr 0)("lim")[("sin"^(2)(x)/(2))/(4 xx ((x)/(2))^(2))]=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr0) (f(x))/(x^(2))=a and lim_(xrarr0) (f(1-cosx))/(g(x)sin^(2)x)=b (where b ne 0 ), then lim_(xrarr0) (g(1-cos2x))/(x^(4)) is

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

If f(x) is twice differentiable and f^('')(0) = 3 , then lim_(x rarr 0) (2f(x)-3f(2x)+f(4x))/x^(2) is

Let f(x) = 2x + 5. If x ne 0 then find (f (x +2) - f(2))/(x)

If y =sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find f(x).