Home
Class 12
MATHS
If int e^(sec x)(sec x tan x f(x)+(sec x...

If `int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C`, then a possible choice of f(x) is

A

`x sec x + tan x + (1)/(2)`

B

`sec x + tan x + (1)/(2)`

C

`sec x + x tan x -(1)/(2)`

D

`sec x - tan x -(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given, `int e^(sec x)[(sec x tan x)f(x)+(sec x tan x + sec^(2)x)]dx=e^(sec x)* f(x)+C`
On differentiating both sides w.r.t.x, we get `e^(sec x)[(sec x tan x)f(x)+(sec x tan x + sec^(2) x)]`
`=e^(sec x)f'(x) + e^(sec x)(sec x tan x)f(x)`
`rArr e^(sec x)(sec x tan x + sec^(2)x)=e^(sec x)f'(x)`
`rArr f'(x)=sec x tan x + sec^(2)x`
So, `f(x)=int f'(x)dx=int (sec x tan x + sec^(2)x)dx`
`= sec x + tan x + C`
So, possible value of f(x) from options, is `f(x) = sec x + tan x + (1)/(2)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

sec^(2)(x/5)

tan x sqrt( sec x )

e^(x) sec x ( 1 + tan x )

int (sec x)/(sqrt(cos 2 x )) dx is

sec x =2

int (sec^(2) x)/( tan^(2) x - 1) dx is

"sec"(3 + x) tan (3 + x)

Differentiate : e^(x) (tan x + log sec x )