Home
Class 12
MATHS
The integral int(1+x-1/x)e^(x+1/x)dx is ...

The integral `int(1+x-1/x)e^(x+1/x)dx` is equal to

A

`(x-1)e^(x+(1)/(x))+c`

B

`xe^(x+(1)/(x))+c`

C

`(x+1)e^(x+(1)/(x))+c`

D

`-xe^(x+(1)/(x))+c`

Text Solution

Verified by Experts

The correct Answer is:
B

`int(1+x-(1)/(x))e^(x+(1)/(x))dx`
`=int e^(x+(1)/(x))dx+int(1-(1)/(x^(2)))e^(x+(1)/(x))dx`
`=int e^(x+(1)/(x))dx + xe^(x+(1)/(x))-int(d)/(dx)(x)e^(x+(1)/(x))dx`
`=int e^(x+(1)/(x))dx + xe^(x+(1)/(x))-int e^(x+(1)/(x))dx" "[therefore int(1-(1)/(x^(2)))e^(x+(1)/(x))dx = e^(x+(1)/(x))]`
`=int e^(x+(1)/(x))dx + xe^(x+(1)/(x))-int ex^(x+(1)/(x))dx = xe^(x+(1)/(x))+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

int(x^(3)-1)/(x^(3)+x) dx is equal to:

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

int(e^(x))/(x)(1+xlogx)dx is equal to

int(x^3-x)/(1+x^6)dx is equal to

int sqrt(e^(x)-1)dx is equal to

int(cos^(-1)x+sin^(-1)x)dx is equal to

int(dx)/(e^(x)+e^(-x)) is equal to

int (dx)/(e^(x) - 1 ) dx is

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "