Home
Class 12
MATHS
Evaluate: intsin^(-1)((2x+2)/(sqrt(4x^2+...

Evaluate: `intsin^(-1)((2x+2)/(sqrt(4x^2+8x+13)))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(x+1)"tan"^(-1)((2x+2)/(3))-(3)/(4)"log"(4x^(2)+8x+13)+c`

Let `I=int sin^(-1)((2x+2)/(sqrt(4x^(2)+8x+13)))dx`
`=sin^(-1)((2x+2)/(sqrt((2x+2)^(2)+9)))dx`
Put `2x + 2 = 3 tan theta rArr 2 dx = 3 sec^(2) theta d theta`
`therefore I = int sin^(-1)((3 tan theta)/(sqrt(9 tan ^(2)theta+9)))*(3)/(2)sec^(2)theta d theta`
`=int sin^(-1)((3 tan theta)/(3 sec theta))*(3)/(2)sec^(2)theta d theta`
`=int sin^(-1)((sin theta)/(cos theta*sec theta))*(3)/(2)sec^(2)theta d theta`
`=(3)/(2)int sin^(-1)(sin theta)*sec^(2)theta d theta`
`=(3)/(2)int theta* sec^(2)theta d theta=(3)/(2)[theta*tan theta-int1*tan theta d theta]`
`=(3)/(2)[theta tan theta - log sec theta]+c`
`=(3)/(2)[tan^(-1)((2x+2)/(3))*((2x+2)/(3))-logsqrt(1+((2x+2)/(3))^(2))]+c_(1)`
`=(x+1)tan^(-1)((2x+2)/(3))-(3)/(4)log[1+((2x+2)/(3))^(2)]+c_(1)`
`=(x+1)tan^(-1)((2x+2)/(3))-(3)/(4)log(4x^(2)+8x+13)+c["let"(3)/(2)log 3+c_(1)=c]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: intsin^4x\ dx

Evaluate: intsin^3xcos^2x dx

Evaluate int_(1)^(4)(dx)/(sqrt(8+2x-x^2))

Find int(xsin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: intsin^(-1)sqrt(x/(a+x))dxdot

Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

Evaluate: int_0^1(2-x^2)/((1+x)sqrt(1-x^2))dx

Evaluate intsin^(3)x cos^(2)x dx

Evaluate: int(x+1)/((x-1)sqrt(x+2))dx

Evaluate: int_(0)^(1) dx/sqrt(4-x^2)