Home
Class 12
MATHS
The integral int[2x^[12]+5x^9]/[x^5+x^3...

The integral `int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx` is equal to- (A) `x^10 / (2(x^5 + x^3 +1)^2) ` (B) `x^5/ (2(x^5 + x^3 +1)^2) ` (C) `-x^10 / (2(x^5 + x^3 +1)^2) ` (D) `- x^5 / (2(x^5 + x^3 +1)^2) `

A

`(-x^(5))/((x^(5)+x^(3)+1)^(2))+C`

B

`(x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`

C

`(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C`

D

`(-x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I=int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=int(2x^(12)+5x^(9))/(x^(15)(1+x^(-2)+x^(-5))^(3))dx`
`=int(2x^(-3)+5x^(-6))/((1+x^(-2)+x^(-5))^(3))dx`
Now, put `1 + x^(-2)+ x^(-5) = t`
`rArr (-2x^(-3)-5x^(-6))dx=dt`
`rArr (2x^(-3)+5x^(-6))dx=dt`
`therefore I= - int(dt)/(t^(3))=-int t^(-3)dt`
`=-(t^(-3+1))/(-3+1)+C=(1)/(2t^(2))+C`
`=(x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : (2x^2 - 3x+1) (2x^2 + 5x + 1) = 9x^2 .

Evaluate int[5x^4 + 3(2x + 3)^4 - 6 (4 - 3x)^5 ]dx

Divide (2x^(2) + x-3)/((x-1)^(2)) " by " (2x^(2) + 5x +3)/(x^(2)-1)

Evaluate int (x^(2) + 5x + 3)/(x^(2) + 3x + 2) dx

Simplify (x-3)/(x^(2)-x-6) + (2x-1)/(2x^(2) + 5x-3) - (2x +5)/(x^(2) + 5x +6)

sec^(2) (x)/(5) + 18 cos 2 x + 10 sec (5 x + 3) tan (5x + 3 )

Use suitable idntities to find the following products (i) (x +5) (x +2) (ii) (x-5) (x-5) (iii) (3x +3) (3x -2) (iv) (x ^(2) + (1)/( x ^(2)) )(x ^(2) - (1)/( x ^(2))) (v) (1+x) (1+x)

For x in R , lim_(xrarroo)((x-3)/(x+2))^x is equal to (a) e (b) e^(-1) (c) e^(-5) (d) e^5