Home
Class 12
MATHS
The value of the integral int(cos^3x+cos...

The value of the integral `int(cos^3x+cos^5x)/(sin^2x+sin^4x)dxi s` `
` (a).`sinx-6tan^(-1)(sinx)+C` (b). `sinx-2(sinx)^(-1)+C` (c). `sinx-2(sinx)^(-1)-6tan^(-1)(sinx)+C` (d).`sinx-2(sinx)^(-1)+5tan^(-1)(sinx)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I=int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx`
`=int((cos^(2)+xos^(4)x)*cos x dx)/((sin^(2)x+sin^(4)x))`
Put `sin x = t rArr cos x dx = dt`
`therefore" "I=int([(1-t^(2))+(1-t^(2))^(2)])/(t^(2)+t^(4))dt`
`rArr" "I=int(1-t^(2)+1-2t^(2)+t^(4))/(t^(2)+t^(4))dt`
`rArr" "I=int(2-3t^(2)+t^(4))/(t^(2)(t^(2)+1))dt" "....(i)`
Using partial fraction for `(y^(2)-3y+2)/(y(y+1))=1+(A)/(y)+(B)/(y=1)" "["where", y = t^(2)]`
`rArr" "A=2, B=-6`
`therefore" "(y^(2)-3y+2)/(y(y+1))=1+(2)/(y)-(6)/(y+1)`
Now, Eq. (i) reduces to, `I=int(1+(2)/(t^(2))-(6)/(1+t^(2)))dt`
`=t-(2)/(t)-6 tan^(-1)(t)+c`
`=sin x -(2)/(sin x)-6 tan^(-1)(sin x)+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int(cosx)/((1-sinx)(2+sinx))dx

If y=(sinx)^(tanx),t h e n(dy)/(dx)= (a) (sinx)^(tanx)(1+sec^2xlogsinx) (b) tanx(sinx)^(tanx-1)cosx (c) (sinx)^(tanx) (d) sec^2xlogsinx tanx(sinx)^(tanx-1)

Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

Integrate (2cosx-3sinx)/(6cosx+4sinx) w.r.t.x.

intsqrt(1+cos e cx)dx equals (a) 2sin^(-1)sqrt(sinx)+c (b) sqrt(2)cos^(-1)sqrt(cosx)+c (c) c-2sin^(-1)(1-2sinx) (d) cos^(-1)(1-2sinx)+c

Evaluate: lim_(n->0)(e^(sinx)-(1+sinx))/({tan^(-1)(sinx)}^2)

Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)\ dx

Find the following integrals : int(1+sinx)/(cos^(2)x)dx

prove that 1-1/2(sin2x)=(sin^3 x +cos^3 x)/(sinx +cosx)

The value of int_(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx is