Home
Class 12
MATHS
Evaluate: int(x+1)/(x(1+xe^x)^2)dx...

Evaluate: `int(x+1)/(x(1+xe^x)^2)dx`

Text Solution

Verified by Experts

The correct Answer is:
`"log"|(xe^(x))/(1+xe^(x))|+(1)/(1+xe^(x))+c`

Let `I=int((x+1))/(x(1+xe^(x))^(2))dx=int(e^(x)(x+1))/(xe^(x)(1+xe^(x))^(2))dx`
Put `1 + xe^(x) = t rArr (e^(x)+xe^(x))dx=dt`
`therefore" "I=int(dt)/((t-1)t^(2))=int[(1)/(t-1)-(1)/(t)-(1)/(t^(2))]dt`
`=log|t-1|-log|t|+(1)/(t)+c`
`=log|(t-1)/(t)|+(1)/(t)+c`
`=log|(xe^(x))/(1+xe^(x))|+(1)/(1+xe^(x))+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int (x-1)/(x+1) dx

Evaluate: int(x^3)/(x+1)dx

Evaluate int((x+1)/(x))(x+logx)^(2)dx

Evaluate: int x (1-x)^16 dx

Evaluate: int(x+1)/((x-1)^(2)(x+2))dx .

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x^4+1)dx

Evaluate: int(x^3+1)/(x^2+x)dx

Evaluate: int(2x+1)/(x^4+2x^3+x^2-1)dx

Evaluate: int(log(1+1/x))/(x(1+x))dx