Home
Class 12
MATHS
If tangent of y^(2)=x at (alpha,beta), w...

If tangent of `y^(2)=x` at `(alpha,beta)`, where `betagt0` is also a tangent of ellipse `x +2y^(2)=1` then value of `alpha` is

A

`sqrt(2)+1`

B

`sqrt(2)-1`

C

`2 sqrt(2)+1`

D

`2sqrt(2)-1`

Text Solution

Verified by Experts

The correct Answer is:
A

Since the point `( alpha , beta ) `is on the parabola `y^(2)= x, ` so
Now , equation of tangent at point `(alpha , beta)` to the parabola `y^(2)= x, ` is ` T=o `
`implies y beta =(1) /(2) (x+alpha)`
`[:' ` equation of the tangent to the parabola `y^(2)=4ax` at a point `(x_(1) ,y_(1))` is given by `YY_(1)= 2a (x+x_(1))]`
`implies 2 yBeta = (1) /(2) ( x+a)`
`[:' ` equation of the tangent to the parabola `y^(2)= 4ax` at a point `(x_(1) ,y_(1) ) ` is given by `Y Y_(1) = 2a ( x+x_(1)]`
` 2 y beta = x+ beta ^(2) `
`implies y= (x)/(2 beta)+(beta)/(2) `
since . line (ii) is also a tangent of the ellipse
`x^(2)+2y^(2)=1`
`therefore ((beta)/(2))^(2)=(1)^(2)((1)/(2 beta))^(2)+(1)/(2)`
`[:' ` condition of tangencny of line `y= mx + c to ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`is = a^(2)m^(2)+b^(2)`
here `m=(1)/(2 beta ), a =1, b=-(1)/(sqrt(2)) and c=( beta)/(2)]`
`implies ( beta^(2))/(4) =(1) / ( 4 beta^(2))+(1)/(sqrt(2))`
`implies beta^(4)= 1+ 2 beta^(2)` -1=0`
`implies beta^(2)=(2+- sqrt(4+4))/(2) =(2+- 2sqrt(2))/( 2) = 1 +- sqrt(2) `
` implies beta ^(2)=1+ sqrt(2)=1+ sqrt(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 4x+y+k=0 is a tangent to the ellipse x^(2)+3y^(2)=3 then k = ?

If the line y=mx+c is a tangent to the ellipse x^(2)+2y^(2)=4 , find c

If x cos alpha +y sin alpha = 4 is tangent to (x^(2))/(25) +(y^(2))/(9) =1 , then the value of alpha is

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

The exhaustive set value of alpha^2 such that there exists a tangent to the ellipse x^2+alpha^2y^2=alpha^2 and the portion of the tangent intercepted by the hyperbola alpha^2x^2-y^2 subtends a right angle at the center of the curves is [(sqrt(5)+1)/2,2] (b) (1,2] [(sqrt(5)-1)/2,1] (d) [(sqrt(5)-1)/2,1]uu[1,(sqrt(5)+1)/2]

If alpha, beta are the roots of 7x^(2)+ax+2=0 and if beta-alpha=(-13)/(7). find the value of a.

If two distinct tangents can be drawn from the point (alpha, alpha+1) on different branches of the hyperbola (x^(2))/(9)-(y^(2))/(16)=1 , then find the values of alpha .

If alpha,beta are roots of x^2-3x+a=0 , a in R and alpha <1< beta then find the value of a.