Home
Class 12
MATHS
It cos(alpha+beta)=4/5,sin(alpha-beta)=5...

It `cos(alpha+beta)=4/5,sin(alpha-beta)=5/(13)a n dalpha,beta` lie between `0a n dpi/4` , prove that `tan2alpha=(56)/(33)`

A

`(63)/(52)`

B

`(63)/(16)`

C

`(21)/(16)`

D

`(33)/(52)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given, `sin(alpha - beta) = (5)/(13)`
and `cos(alpha + beta) = (3)/(5)`, where `alpha, beta in (0,(pi)/(4))`
Since, `0 lt alpha lt (pi)/(4)` and `0 lt beta lt (pi)/(4)`
`therefore 0 lt alpha + beta lt (pi)/(4) + (pi)/(4) = (pi)/(2)`
`implies 0 lt alpha + beta lt (pi)/(2)`
Also, `-(pi)/(4) lt -beta lt 0`
`therefore 0 - (pi)/(4) lt alpha - beta lt (pi)/(4) + 0`
`implies -(pi)/(4) lt alpha - beta lt (pi)/(4)`
`therefore alpha + beta in (0, (pi)/(2)) and alpha - beta in (-(pi)/(4), (pi)/(4))`
But `sin(alpha - beta) gt 0`, therefore `alpha - beta in (0, (pi)/(4))`
Now, `sin(alpha-beta) = (5)/(13)`
`implies tan(alpha - beta)=(5)/(12)" (i)"`
and `cos(alpha + beta) = (3)/(5)`
`implies tan (alpha + beta) = (4)/(3) " (ii)"`
Now, `tan(2alpha) = tan [(alpha + beta) + (alpha-beta)]`
`=(tan(alpha+beta)+tan(alpha-beta))/(1-tan(alpha+beta)tan(alpha-beta))=((4)/(3)+(5)/(12))/(1-(4)/(3)xx(5)/(12))" [from Eqs. (i) and (ii)]"`
`=(48 + 15)/(36-20)=(63)/(16)`
Promotional Banner

Similar Questions

Explore conceptually related problems

IF cos ( alpha + beta ) =0 then sin ( alpha + 2 beta ) is equal to

IF cot ( alpha + beta ) =0 then sin ( alpha + 2 beta ) is equal to

If cos alpha + cos beta = 1//2 and sin alpha+ sin beta = 1//3 , then

If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

If alpha+beta=4" and "alpha^(3)+beta^(3)=44" the "alpha, beta are the roots of the equation

Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) ]:} =0

If sin(120^0-alpha)=sin(120^0-beta),0

If (cos^(4)alpha)/(cos^(2) beta) + (sin^(4)alpha)/(sin^(2)beta) = 1, prove that (cos^(4)beta)/(cos^(2) alpha) + (sin^(4)beta)/(sin^(2)alpha)= 1

If cos alpha + cos beta =0 = sin alpha + sin beta , then cos 2 alpha + cos 2 beta is equal to