Home
Class 12
MATHS
Letf(4)(x) = (1)/(k) [ sin^(k) + cos^(k)...

Let`f_(4)(x) = (1)/(k) [ sin^(k) + cos^(k) x ] `where x `in RR` and `k ge`1.
then `f_(4)(x) - f_(6)(x)` =

A

`(1)/(12)`

B

`(5)/(12)`

C

`(-1)/(12)`

D

`(1)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`f_(k)(x) = (1)/(k)(sin^(h)x+ cos^(k)x), k = 1, 2, 3, ...`
`therefore f_(4)(x) = (1)/(4)(sin^(4)x + cos^(4) x)`
`=(1)/(4)((sin^(2)x + cos^(2)x)^(2)-2sin^(2)xcos^(2)x)`
`=(1)/(4)(1-(1)/(2)(sin2x)^(2))=(1)/(4)-(1)/(8)sin^(2)2x`
and `f_(6)(x)=(1)/(6)(sin^(6)x + cos^(6)x)`
`=(1)/(6){(sin^(2)x+cos^(2)x)^(3)-3sin^(2) x cos^(2)x (sin^(2)x + cos^(2)x)}`
`=(1)/(6){1-(3)/(4)(2sin x cos x)^(2)}=(1)/(6)-(1)/(8)sin^(2)2x`
Now, `f_(4)(x) - f_(6)(x)=(1)/(4)-(1)/(6)=(3-2)/(12)=(1)/(12)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1 + cos x=k where x is acute , then sin x/2

Find k if f^(@) f (k) =13 where f(k) =2k -1

Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| The range of f(x) is

Let f(x)=a^(x)(a gt 0) be written as f(x)=f_(1)(x)+f_(2)(x), " where " f_(1)(x) is an function and f_(2)(x) is an odd function. Then f_(1)(x+y)+f_(1)(x-y) equals

Evaluate int_(0)^(prop) (x^k)/(k^x) dx where k ge 2 .

Let h(x) be differentiable for all x and let f(x) = (kx=e^(x)) h(x) where k is some constant. If h(0)=5, h^(')(0) = -2 and f^(')(0) =18 then the value of k is equal to

Find k if fog=gof where f(x)=2x+1 , g(x)=x+k .

For x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions. If a function, J(x) satisfies (f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x) is equal to