Home
Class 12
MATHS
If A = sin^2 theta+ cos^4 theta, then f...

If `A = sin^2 theta+ cos^4 theta`, then for all real values of `theta`

A

`1leAle2`

B

`(3)/(4) le A le 1`

C

`(13)/(16) le A le 1`

D

`(3)/(4) le A le (13)/(16)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given, `A - sin^(2) theta+(1-sin^(2) theta)^(2)`
`implies A = sin^(4) theta - sin^(2) theta + 1`
`implies A = (sin^(2)theta-(1)/(2))^(2)+(3)/(4)`
`implies 0le (sin^(2)theta-(1)/(2))^(2)le(1)/(4) " "[because 0 le sin^(2) theta le 1]`
`therefore (3)/(4) le A le 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=sin^8theta+cos^(14)theta; then for all real theta

The maximum value of 1+sin(pi/4+theta)+2cos(pi/4-theta) for real values of theta is

3 sin theta -4 cos theta = 0, then find the values of all trigonometric ratios.

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is

If x sin ^3 theta +y cos^3 theta = sin theta cos theta and x sin theta =y cos theta then x^2 +y^2 is

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

If sin theta + cos theta theta = sqrt(2) cos theta then cos theta - sin theta is

If sin theta = cos theta , " then " 2 tan^(2) theta + sin^(2) theta -1 is equal to .............

Solve sin^(2) theta-2 cos theta+1/4=0