Home
Class 12
MATHS
For 0 lt theta lt pi/2, the solution (s)...

For `0 lt theta lt pi/2`, the solution (s) of
`sum_(m=1)^(6) cosec (theta+ ((m-1))/4 pi) cosec (theta+ (mpi)/4)=4sqrt(2)` is (are)

A

`(pi)/(4)`

B

`(pi)/(6)`

C

`(pi)/(12)`

D

`(5pi)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
C, D

For `0 lt theta lt (pi)/(2)`
`underset(m=1)overset(6)Sigmacosec (theta+((m-1)pi)/(4))cosec(theta + (mpi)/(4))=4sqrt(2)`
`implies underset(m=1)overset(6)Sigma (1)/(sin.(theta+((m-1)pi)/(4))sin(theta+(mpi)/(4)))=4sqrt(2)`
`implies underset(m=1)overset(6)Sigma sin[theta+(mpi)/(4)-(theta+((m-1)pi)/(4))]/(sin.(pi)/(4){sin .(theta+((m-1)pi)/(4))sin.(theta+(mr)/(4))})=4sqrt(2)`
`implies underset(m=1)overset(6)Sigma(cot(theta+((m-1)pi)/(4))-cot(theta+(mpi)/(4)))/(1//sqrt(2))=4sqrt(2)`
`implies underset(m=1)overset(6)Sigma[cot(theta+((m-1)pi)/(4))-cot(theta+(mpi)/(4))]=4`
`impliescot(theta)-cot(theta+(pi)/(4))+cot(theta+(pi)/(4))-cot(theta+(2pi)/(4))+...+cot(theta+(5pi)/(4))-cot(theta+(6pi)/(4))=4`
`implies cot theta - cot((3pi)/(2)+theta)=4`
`implies cot theta + tan theta = 4`
`implies tan^(2)theta - 4 tan theta + 1 = 0`
`implies (tan theta - 2)^(2) - 3 = 0`
`implies (tan theta-2 + sqrt(3))(tan theta-2-sqrt(3))=0`
`implies tan theta = 2 -sqrt(3) or tan theta = 2 + sqrt(3)`
`implies theta = (pi)/(12), theta = (5pi)/(12) " "[because theta in (0, (pi)/(2))]`
Promotional Banner

Similar Questions

Explore conceptually related problems

For 0 lt theta lt pi/2 , the solutions of sigma_(m-1)^(6)"cosec"(theta+((m-1)pi)/4)" cosec "(theta+(mpi)/4)=4sqrt(2) is (are):

If 0 lt theta lt pi, then minimum value of 3sintheta+cosec^3 theta is

If tan theta = (-4)/(3) then " cosec" theta is

Solve cot theta + tan theta=2 cosec theta .

If cosec theta = 2/(sqrt3) , then theta = …..

If pi lt 2 theta lt (3pi)/(2), then sqrt(2 + sqrt( 2 + 2 cos 4 theta)) equals to

(cot theta + "cosec" theta -1)/( cot theta - "cosec" theta +1) is

Prove that (cot theta -cos theta )/( cot theta +cos theta ) =(cos ec theta -1)/( cosec theta +1)

Solve cosec^(2)theta-cot^(2) theta=cos theta .

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .