Home
Class 12
MATHS
If sin^ 4 x/2+cos^4 x/3 =1/5 then...

If `sin^ 4 x/2+cos^4 x/3 =1/5` then

A

`tan^(2) x = (2)/(3)`

B

`(sin^(8)x)/(8) + (cos^(8)x)/(27) = (1)/(125)`

C

`tan^(2)x=(1)/(3)`

D

`(sin^(8)x)/(8)+(cos^(8)x)/(27)=(2)/(125)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`(sin^(4)x)/(2)+(cos^(4)x)/(3)=(1)/(5)implies(sin^(4)x)/(2)+((1-sin^(2)x)^(2))/(3)=(1)/(5)`
`implies(sin^(4)x)/(2)+(1+sin^(4)x-2sin^(2)x)/(3)=(1)/(5)`
`implies 5 sin^(4)x-4sin^(2)x+2=(6)/(5)`
`implies 25sin^(4)x-20sin^(2)x+4=0`
`implies(5sin^(2)x-2)^(2)=0`
`implies sin^(2)x = (2)/(5) cos^(2)x = (3)/(5), tan^(2)x=(2)/(3)`
`therefore" "(sin^(8)x)/(8)+(cos^(8)x)/(27)=(1)/(125)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin^4x)/2+(cos^4x)/3=1/5t h e n tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

If 4sin^4x+cos^4x=1 ,then x is equal to (n in Z) (a) npi (b) npi+-sin^(-1)sqrt(2/5) (c) (2npi)/3 (d) 2npi+-pi/4

Solve sin^4(x/3)+cos^4(x/3)>1/2

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

If cos x + cos^2 x=1 , then the value of sin ^4 x + sin ^6 x is equal to

The total number of solution of the equation sin^4 x +cos^4 x = sin x cos x in [0,2pi] is :

Solve sin 2x=4 cos x .

(sin 5x + sin 3x )/( cos 5x + cos 3x ) = tan 4x

The general solution of 4 sin^4 x + cos^4x= 1 is

If f(x)=sin^6x+cos^6x , then range of f(x) is [1/4,1] (b) [1/4,3/4] (c) [3/4,1] (d) none of these