Home
Class 12
MATHS
For a positive integer n , let fn(theta)...

For a positive integer `n ,` let `f_n(theta)=(tantheta//2)(1+sectheta)(1+sec2theta)(1+sec4theta)(1+sec2^ntheta)dotT h e n` `f_2(pi/(16))=1` (b) `f_3(pi/(32))=1` `f_4(pi/(64))=1` (d) `f_5(pi/(128))=1`

A

`f_(2) ((pi)/(16))=1`

B

`f_(3) ((pi)/(32))=1`

C

`f_(4) ((pi)/(64))=1`

D

`f_(5) ((pi)/(128))=1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

NOTE Multiplicative loop is very important approach in IIT Mathematics
`(tan.(theta)/(2))(1+sectheta)=(sintheta//2)/(sintheta//2)[1+(1)/(costheta)]`
`=((sintheta//2)2cos^(2)theta//2)/((costheta//2)costheta)`
`=((2sintheta//2)cos theta//2)/(costheta)=(sintheta)/(costheta)=tan theta`
`therefore" " f_(n)(theta) = (tantheta//2)(1+sectheta)`
`(1+sec 2 theta)(1+sec2^(2)theta)...(1+sec2^(n)theta)`
`=(tan theta)(1+sec 2 theta)(1+sec2^(2) theta)...(1+sec2^(n)theta)`
`=tan2 theta.(1 + sec2^(2)theta)...(1+sec2^(n)theta)`
`=tan (2^(n)theta)`
Now, `f_(2)((pi)/(16))=tan(2^(2).(pi)/(16))=tan((pi)/(4))=1`
Therefore, (a) is the answer.
`f_(3)((pi)/(32))=tan(2^(3).(pi)/(32))=tan((pi)/(4))=1`
Therefore, (b) is the answer.
`f_(4)((pi)/(64))=tan(2^(4).(pi)/(64))=tan((pi)/(4))=1`
Therefore, (c) is the answer.
`f_(5)((pi)/(128))=tan(2^(5).(pi)/(128))=tan((pi)/(4))=1`
Therefore, (d) is the answer.
Promotional Banner

Similar Questions

Explore conceptually related problems

For a positive integer n , let f_n(theta)=(tantheta//2)(1+sectheta)(1+sec2theta)(1+sec4theta)...................(1+sec2^ntheta) . Then (a) f_2(pi/(16))=1 (b) f_3(pi/(32))=1 (c) f_4(pi/(64))=1 (d) f_5(pi/(128))=1

Prove that: (1+sec2theta)(1+sec4theta)(1+sec8theta)(1+sec2^ntheta)=t a n2^nthetacottheta, n in Ndot

Prove that (1+sec 2 theta)(1+sec 4 theta)(1+sec 8 theta)=(Tan 8theta)/(tan theta)

Prove that: (tantheta)/(sectheta -1) = (tan theta + sec theta + 1)/(tan theta + sec theta -1)

Prove that (sec 8theta-1)/(sec 4 theta -1) = (tan 8theta)/(tan 2theta)

If (sec theta - 1)(sec theta + 1) = 1/3, then cos theta = …………

Prove that (1+sec 2 theta) (1+sec 4 theta)........(1+sec 2^(n) theta)=tan 2^(n) theta cot theta

Evaluate: int_0^(pi/4)(tan^(-1)((2cos^2theta)/(2-sin2theta)))sec^2theta d theta dot

If n is positive integer prove that ((1+sintheta+icostheta)/(1+sintheta-icostheta))^(n)=cosn((pi)/(2)-theta)+isinn((pi)/(2)-theta) .

Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the value f(alpha)f (beta) is